Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T22:17:01.581Z Has data issue: false hasContentIssue false

Crystal growth of YBa2Cu3O7 by the SRL-CP method under low oxygen partial pressure atmosphere

Published online by Cambridge University Press:  03 March 2011

M. Nakamura
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Y. Yamada
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

Single crystals of YBa2Cu3O7−x (Y123) were grown by a modified top-seeded crystal pulling method using a BaO-CuO solution with the solid Y2BaCuO5 (Y211) as a solute in an yttria crucible [the so-called solute-rich liquid crystal pulling (SRL-CP) method] under 2% oxygen partial pressure atmosphere [P(O2) = 0.02 atm]. According to the pseudo-binary phase diagrams of Lee and Lee,1 the temperature of Y123 crystal growth was expected to be lower for 0.02 atm oxygen pressure than for 0.21 atm oxygen pressure. The single crystals grown under P(O2) = 0.02 atm and cooled under the same atmosphere after the separation of crystal from a solution had twins near the microcracks on the crystal surface. On the other hand, the single crystals grown under P(O2) = 0.02 atm and cooled under pure nitrogen atmosphere (6N) showed no twin structure. These results indicate that twins did not form during crystal growth but formed due to tetragonal-orthorhombic transition as a consequence of oxygenation at cooling under low oxygen partial pressure.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 74, 78 (1991).CrossRefGoogle Scholar
2Schneemeyer, L. F., Waszczak, J. V., Siegrist, T., van Dover, R. B., Rupp, L. W., Batlogg, B., Cava, R. J., and Murphy, D. W., Nature 328, 601 (1987).Google Scholar
3Rice, J. P., Pazol, B. G., Ginsberg, D. M., Moran, T. J., and Weissman, M. B., J. Low Temp. Phys. 72, 345 (1988).Google Scholar
4Menken, M. J. V. and Menovsky, A. A., J. Cryst. Growth 91, 264 (1988).CrossRefGoogle Scholar
5Keester, K. L., Housley, R. M., and Marshall, D. B., J. Cryst. Growth 91, 295 (1988).Google Scholar
6Boutellier, R., Sun, B. N., Scheel, H. J., and Schmid, H., J. Cryst. Growth 96, 465 (1989).CrossRefGoogle Scholar
7Wolf, T., Goldacker, W., Obst, B., Roth, G., and Flukiger, R., J. Cryst. Growth 96, 1010 (1989).Google Scholar
8Abell, J. S., Darlington, C. N. W., Drake, A., Hollin, C. A., Forgan, E. M., O'Connor, D. A., and Sutton, S. D., Physica C 162–164, 909 (1989).CrossRefGoogle Scholar
9Sadowski, W. and Scheel, H. J., J. Less-Comm. Met. 150, 219 (1989).Google Scholar
10Dembinski, K., Gervais, M., Odier, P., and Coutures, J. P., J. Less-Comm. Met. 164–165, 177 (1990).Google Scholar
11Wang, Y., Schreurs, L. W. M., Linen, P. V. D., Li, Y., and Bennema, P., J. Cryst. Growth 106, 487 (1990).Google Scholar
12Gencer, F. and Abell, J. S., J. Cryst. Growth 112, 337 (1991).Google Scholar
13Watanabe, K., J. Cryst. Growth 114, 269 (1991).CrossRefGoogle Scholar
14Barilo, S. N., Ges, A. P., Guretskii, S. A., Zhigunov, D. I., Zubets, A. V., Ignatenko, A. A., Igumentsev, A. N., Lomako, I. D., Luginets, A. M., Yakimovich, V. N., Kurochkin, L. A., Markova, L. V., and Krot, O. I., J. Cryst. Growth 119, 403 (1992).CrossRefGoogle Scholar
15Liang, R., Dosanjh, P., Bonn, D. A., Baar, D. J., Carolan, J. F., and Hardy, W. N., Physica C 195, 51 (1992).CrossRefGoogle Scholar
16Asaoka, H., Takei, H., Lye, Y., Tamura, M., Kinoshita, M., and Takeya, H., Jpn. J. Appl. Phys. 32, 1091 (1993).Google Scholar
17Oka, K., Unoki, H., Moe, A. M., Iga, F., Kaneko, K., Ha, D. H., and Han, T. S., Advances in Superconductivity V (Springer-Verlag Tokyo, 1993), p. 383.Google Scholar
18Lin, C. T., Schonherr, E., Bender, H., Liang, W. Y., and Abell, J. S., J. Cryst. Growth 128, 747 (1993).Google Scholar
19Yamada, Y. and Shiohara, Y., Physica C 217, 182 (1993).Google Scholar
20Lay, K. W. and Renlund, G. M., J. Am. Ceram. Soc. 73, 1208 (1990).Google Scholar
21Sun, B. N., Hartman, P., Woensdregt, C. F., and Schmid, H., J. Cryst Growth 100, 605 (1990).CrossRefGoogle Scholar
22Lindemer, T. B., Hunley, J. F., Gates, J. E., Sutton, A. L. Jr.Brynestad, J., Hubbard, C. R., and Gallagher, P. K., J. Am. Ceram. Soc. 72, 1775 (1989).Google Scholar