Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T00:14:26.411Z Has data issue: false hasContentIssue false

Crystal orientation and growth anisotropy of YBa2Cu3O6+x fabricated by directional solidification method

Published online by Cambridge University Press:  03 March 2011

Y. Nakamura
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Koto-ku, Tokyo 135, Japan
K. Furuya
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Koto-ku, Tokyo 135, Japan
T. Izumi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Koto-ku, Tokyo 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13 Koto-ku, Tokyo 135, Japan
Get access

Abstract

The unidirectional solidification by a zone-melting method was performed to investigate the growth anisotropy of YBa2Cu3O6+x (123) superconductive oxides. Large faceted interfaces were obtained at growth rates lower than 2 mm/h. The three-dimensional interface morphology and the onset of growth were observed. The crystal faces toward the growth direction were revealed to be close to the {112} face, which was selected as the result of the preferential growth. The growth rate of the {100} faces was evaluated to be about 1.5 times faster than that of the {001} faces from the steady growth condition.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T., Sherwood, R., van Dover, R., Davis, H., Kammlott, G., and Fastnacht, R., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2Murakami, M., Morita, M., and Koyama, N., Jpn. J. Appl. Phys. 28, 1125 (1989).Google Scholar
3Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., Oyama, T., Shiohara, Y., and Tanaka, S., Advances in Superconductivity II (Springer-Verlag, Tokyo, 1990), p. 285.Google Scholar
4Izumi, T., Nakamura, Y., Sung, T. H., and Shiohara, Y., Advances in Superconductivity IV (Springer-Verlag, Tokyo, 1992), p. 429.Google Scholar
5Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72, 179 (1992).Google Scholar
6Nakamura, Y., Izumi, T., Shiohara, Y., and Tanaka, S., J. Jpn. Inst. Metal 56, 810 (1992).Google Scholar
7Bateman, C. A., Zhang, L., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).Google Scholar
8Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth 128, 757 (1993).Google Scholar
9Nakamura, Y., Izumi, T., and Shiohara, Y., Advances in Superconductivity V (Springer-Verlag, Tokyo, 1993), p. 585.Google Scholar
10Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbusch, P. D., and Burns, S. J., Physica C 210, 197 (1993).Google Scholar
11Schmitz, G. J., Laakmann, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Gornert, P., J. Mater. Res. 8, 2774 (1993).Google Scholar
12Sun, B. N., Hartman, P., Woensdregt, C. F., and Schmid, H., J. Cryst. Growth 100, 605 (1990).CrossRefGoogle Scholar
13Hartman, P., in Modern PBC Theory: Morphology of Crystals, Part A, edited by Sunagawa, I. (Terra, Tokyo and Reidel, Dordrecht, The Netherlands, 1988), p. 269.Google Scholar
14Hartman, P. and Bennema, P., J. Cryst. Growth 49, 145 (1980).Google Scholar
15Wolf, Th., Goldacker, W., and Obst, B., J. Cryst. Growth 96, 1010 (1989).CrossRefGoogle Scholar
16Sun, B. N., Boutellier, R., and Schmid, H., Physica C 157, 189 (1989).Google Scholar
17Liang, R., Dosanjh, P., Baar, D. A., Carolan, J. F., and Hardy, W. N., Physica C 195, 51 (1992).Google Scholar