Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T02:04:05.741Z Has data issue: false hasContentIssue false

Crystal structure and defects of Zr4Co4Si7 (V-phase) investigated by high resolution transmission electron microscope

Published online by Cambridge University Press:  31 January 2011

J. F. Mao
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
H. Q. Ye
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
X. G. Ning
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
L. L. He
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
D. Z. Yang
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Get access

Abstract

The results of high resolution transmission electron microscope (HRTEM) observation and image simulation show that Zr4Co4Si7 possesses the same structure type of Zr4Co4Ge7. Addition of Fe or Ni into the Zr4Co4Si7 compound, except that the dimensions changed slightly, does not change the lattice type and coordination in the crystal structure, maintaining the V-phase structure. Also, twins with coherent boundaries and partially coherent interfaces are observed. The image conditions of Zr4Co4Si7 and the structure differences between Zr4Co4Si7 and tetrahedral close-packed phases are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Westbrook, J. H., DiCebo, R. K., and Peat, A. J., GE-58RL2117, September 15 (1958).Google Scholar
2.Jeitschko, W., Jordan, A. G., and Beck, P. A., Trans. Metall. Soc. AIME 245, 335 (1969).Google Scholar
3.Markiv, V. Ya., Gladyshevskii, E. I., Skolozdra, R. V., and Kripyakevich, P. I., Dopov. Akad. Nauk Ukr. RSR Ser. A 266 (1967).Google Scholar
4.Kotur, B. Ya., Bodak, O. I., and Kotur, O.Ya., Dopov. Akad. Nauk Ukr. RSR Ser. A8, 80 (1980).Google Scholar
5.Jeitschko, W., Acta Cryst. B25, 557 (1969).CrossRefGoogle Scholar
6.Chabot, B. and Parthé, E., Acta Cryst. B41, 213 (1985).CrossRefGoogle Scholar
7.Kuo, K. H., Ye, H. Q., and Li, D. X., J. Mater. Sci. 21, 2597 (1986).CrossRefGoogle Scholar
8.Li, D. X., Ye, H. Q., and Kuo, K. H., Philos. Mag. A50, 531 (1984).CrossRefGoogle Scholar
9.Ye, H. Q., Li, D.X., and Kuo, K. H., Acta Cryst. B40, 461 (1984).CrossRefGoogle Scholar
10.Kuo, K. H., Ye, H. Q., and Li, D. X., J. Electron. Microsc. Technique 3, 57 (1986).CrossRefGoogle Scholar
11.Li, D. X. and Kuo, K. H., Acta Cryst. B42, 152 (1986).CrossRefGoogle Scholar
12.Mao, J. F., He, L. L., Ye, H. Q., Yang, D. Z., and Tang, Z. X., Mater. Lett. 18, 257 (1994).CrossRefGoogle Scholar
13.Mao, J. F., He, L. L., Ye, H. Q., Yang, D. Z., and Tang, Z. X., Mater. Lett. 21, 307 (1994).CrossRefGoogle Scholar