Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T21:17:06.157Z Has data issue: false hasContentIssue false

Crystalline silica nanowires

Published online by Cambridge University Press:  03 March 2011

F.L. Deepak
Affiliation:
Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Bangalore 560 064, India
Gautam Gundiah
Affiliation:
Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Bangalore 560 064, India
Md. Motin Seikh
Affiliation:
Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Bangalore 560 064, India
A. Govindaraj
Affiliation:
Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Bangalore 560 064, India
C.N.R. Rao*
Affiliation:
Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Bangalore 560 064, India
*
a) Address all correspondence to this author. e-mail: cnrrao@jncasr.ac.in
Get access

Abstract

α-Cristobalite nanowires of 50–100 nm diameter with lengths of several microns have been synthesized for the first time by the solid-state reaction of fumed silica and activated charcoal. The nanowires have been characterized by x-ray diffraction, electron microscopy, photoluminescence, and Raman scattering. The nanowires are single crystalline as revealed by high-resolution electron microscope images. The crystalline nanowires are clad by an amorphous silica sheath when the carbon to fumed silica ratio in the starting mixture is small. Use of hydrogen along with Ar helps to eliminate the amorphous sheath.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zygmunt, J., Krumeich, F. and Nesper, R.: Novel silica nanotubes with a high aspect ratio—synthesis and structural characterization. Adv. Mater. 15, 1538 (2003).CrossRefGoogle Scholar
2.Rao, C.N.R. and Nath, M.: Inorganic nanotubes. Dalton Trans. 1, 1 (2003).CrossRefGoogle Scholar
3.Wang, Z.L.: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater. 15, 432 (2003).CrossRefGoogle Scholar
4.Rao, C.N.R., Deepak, F.L., Gundiah, G. and Govindaraj, A.: Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).CrossRefGoogle Scholar
5.Zheng, B., Wu, Y., Yang, P. and Liu, J.: Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys. Adv. Mater. 14, 122 (2002).3.0.CO;2-V>CrossRefGoogle Scholar
6.Pan, Z.W., Dai, Z.R., Ma, C. and Wang, Z.L.: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817 (2002).CrossRefGoogle ScholarPubMed
7.Sun, S., Meng, G., Zhang, M., Hao, Y., Zhang, X. and Zhang, L.: Microscopy study of the growth process and structural features of closely packed silica nanowires. J. Phys. Chem. B 107, 13029 (2003).CrossRefGoogle Scholar
8.Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C. and Feng, S.Q.: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 (1998).CrossRefGoogle Scholar
9.Hu, J.Q., Ziang, Y., Meng, X.M., Lee, C.S. and Lee, S.T.: A simple large-scale synthesis of very long aligned silica nanowires. Chem. Phys. Lett. 367, 339 (2003).Google Scholar
10.Wang, Y.W., Liang, C.H., Meng, G.W., Peng, X.S. and Zhang, L.D.: Synthesis and photoluminescence properties of amorphous SiOx nanowires. J. Mater. Chem. 12, 651 (2002).CrossRefGoogle Scholar
11.Wenger, K.S., Cornu, D., Chassagneux, F., Epicier, T. and Miele, P.: Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom. J. Mater. Chem. 13, 3058 (2003).CrossRefGoogle Scholar
12.Lee, K.H., Yang, H.S., Baik, K.H., Bang, J., Vanfleet, R.R. and Sigmund, W.: Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films. Chem. Phys. Lett. 383, 380 (2004).CrossRefGoogle Scholar
13.Fan, R., Wu, Y., Li, D., Yue, M., Majumdar, A. and Yang, P.: Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 125, 5254 (2003).CrossRefGoogle ScholarPubMed
14.Rao, C.N.R., Gundiah, G., Deepak, F.L. and Govindaraj, A.: Carbon-assisted synthesis of inorganic nanowires. J. Mater. Chem. 14, 440 (2004).CrossRefGoogle Scholar
15.Gundiah, G., Govindaraj, A. and Rao, C.N.R.: Nanowires, nanobelts and related nanostructures of Ga2O3. Chem. Phys. Lett. 351, 189 (2002).Google Scholar
16.Gundiah, G., Deepak, F.L., Govindaraj, A. and Rao, C.N.R.: Carbothermal synthesis of the nanostructures of Al2O3 and ZnO. Topics Cat. 24, 137 (2003).Google Scholar
17.Swainson, I.P., Dove, M.T. and Palmer, D.C.: Infrared and Raman spectroscopy studies of the α–β phase transition in cristobalite. Phys. Chem. Miner. 30, 353 (2003).CrossRefGoogle Scholar
18.Sigaev, V.N., Smelyanskaya, E.N., Plotnichenko, V.G., Koltashev, V.V., Volkov, A.A. and Pernice, P.Low-frequency band at 50 cm-1 in the Raman spectrum of cristobalite: Identification of similar structural motifs in glasses and crystals of similar composition. J. Non-Cryst. Solids, 248, 141 (1999).CrossRefGoogle Scholar
19.Greenwood, N.N. and Earnshaw, A.Chemistry of the Elements, 2nd ed. (Butterworth Heinemann, U.K.), pp. 343.Google Scholar
20.Yin, Y. and Xia, Y.: Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv. Funct. Mater. 12, 293 (2002).3.0.CO;2-U>CrossRefGoogle Scholar
21.Pan, Z.W., Dai, Z.R., Ma, C. and Wang, Z.L.: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817 (2002).Google Scholar