Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T16:13:39.632Z Has data issue: false hasContentIssue false

Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films

Published online by Cambridge University Press:  31 January 2011

W. D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
B. M. Clemens
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Get access

Abstract

We examined the stress associated with crystallite coalescence during the initial stages of growth in thin polycrystalline films with island growth morphology. As growing crystallites contacted each other at their bases, the side-walls zipped together until a balance was reached between the energy associated with eliminating surface area, creating a grain boundary and straining the film. Our estimate for the resulting strain depends only on interfacial free energies, elastic properties, and grain size and predicts large tensile stresses in agreement with experimental results. We also discuss possible stress relaxation mechanisms that can occur during film growth subsequent to the coalescence event.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoffman, R.W., Surf. Interface Anal. 3, 62 (1981).CrossRefGoogle Scholar
2.Doerner, M.F. and Nix, W.D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).CrossRefGoogle Scholar
3.Windischmann, Henry, CRC Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).CrossRefGoogle Scholar
4.Koch, R., J. Phys.: Condens. Matter 17, 9519 (1994).Google Scholar
5.Finegan, J.D. and Hoffman, R.W., J. Appl. Phys. 30, 587 (1959).CrossRefGoogle Scholar
6.Hoffman, R.W., in Physics of Thin Films, edited by Haas, G. and Thun, R.E. (Academic Press, New York, 1966), Vol. 3.Google Scholar
7.Hoffman, R.W., Thin Solid Films 34, 185 (1976).CrossRefGoogle Scholar
8.Doljack, F.A. and Hoffman, R.W., Thin Solid Films 12, 71 (1972).CrossRefGoogle Scholar
9.Rottmayer, R.E. and Hoffman, R.W., J. Vac. Sci. Technol. 8, 151 (1971).CrossRefGoogle Scholar
10.Springer, R.W. and Hoffman, R.W., J. Vac. Sci. Technol. 10, 238 (1973).CrossRefGoogle Scholar
11.Sun, R.C., Tisone, T.C., and Cruzan, P.D., J. Appl. Phys. 46, 112 (1975).CrossRefGoogle Scholar
12.Alexander, P.M. and Hoffman, R.W., J. Vac. Sci. Technol. 13, 96 (1976).CrossRefGoogle Scholar
13.Pulker, H.K., Thin Solid Films 89, 191 (1982).CrossRefGoogle Scholar
14.Windischmann, H. and Epps, G. F., J. Appl. Phys. 69, 2231 (1991).CrossRefGoogle Scholar
15.Leusink, G.J., Oosterlaken, T.G.M, Janssen, G.C.A.M, and Radelaar, S., J. Appl. Phys. 74, 3899 (1993).CrossRefGoogle Scholar
16.Wang, W.L., Polo, M.C., Sanchez, G., Cifre, J., and Esteve, J., J. Appl. Phys. 80, 1846 (1996).CrossRefGoogle Scholar
17.Abermann, R., Kramer, R., and Mäser, J., Thin Solid Films 52, 215 (1978).CrossRefGoogle Scholar
18.Abermann, R. and Koch, R., Thin Solid Films 129, 71 (1985).CrossRefGoogle Scholar
19.Koch, R. and Abermann, R., Thin Solid Films 140, 217 (1986).CrossRefGoogle Scholar
20.Abermann, R., Thin Solid Films 186, 233 (1990).CrossRefGoogle Scholar
21.Winau, D., Koch, R., Führmann, A., and Rieder, K.H., J. Appl. Phys. 70, 3081 (1991).CrossRefGoogle Scholar
22.Abermann, R., in Thin Films: Stress and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA 1992), pp. 213256.Google Scholar
23.Abermann, R., Vacuum 41, 1279 (1990).CrossRefGoogle Scholar
24.Ueda, T., Simenson, G.F., Nix, W.D., and Clemens, B.M., in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T.D., Lairson, B.M., Clemens, B.M., Sato, K., and Shin, S-C. (Mater. Res. Soc. Symp. Proc. 382, Warrendale, PA 1995), pp. 279284.Google Scholar
25.Shull, Alison L. and Spaepen, Frans, J. Appl. Phys. 80, 6243 (1996).CrossRefGoogle Scholar
26.Ramaswamy, V., Nix, W.D., and Clemens, B.M., in Thin-Films, Stresses, and Mechanical Properties VII, edited by Cammarata, R.C., Busso, E.P., Nastasi, M., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 1998 pp. 589593).Google Scholar
27.Ramaswamy, V., Clemens, B.M., and Nix, W.D. in Mechanisms and Principles of Epitaxial Growth in Metallic Systems, edited by Wille, L.T., Burmester, C.P., Terakura, K., Comsa, G., and Williams, E.D. (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 1998 pp. 161168).Google Scholar
28.Chiu, Cheng-Hsin and Gao, Huajian, Int. J. Solids and Structures 30, 2983 (1993).Google Scholar
29.Gao, Huajian, Ozkan, C.S., Nix, W.D., Zimmerman, J.A., and Freund, L.B., Phil. Mag 79, 349370 (1998)CrossRefGoogle Scholar
30. Frans Spaepen (private communication).Google Scholar