Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T15:36:24.240Z Has data issue: false hasContentIssue false

Crystallization behavior and microstructure of lithium-calcium aluminogermanate glasses

Published online by Cambridge University Press:  31 January 2011

Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung Institute of Technology, 415 Chien-Kung Road, Kaohsiung, 80782, Taiwan, Republic of China
Get access

Abstract

The crystallization behavior and microstructure of lithium-calcium aluminogermanate (LCAG) glasses have been studied by using differential thermal analysis (DTA), x-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and electron diffraction (ED). Uniform crystallization of the LCAG glass was found to result from two stages of the heating process. The kinetics of crystallization of the LCAG glasses was studied by DTA using the nonisothermal method. The activation energy for 3CaO · Al2O3 · 3GeO2 crystal growth was 693 kJ/mol. The precipitated crystals determined by XRD analysis were mainly 3CaO · Al2O3 · 3GeO2, and minor phases of 2CaO · Al2O3 · GeO2 and Li2O · Al2O3 · 2GeO2. Morphology and microstructure of the glasses after heat treatment determined by SEM and STEM techniques are presented. Crystallization starts at the surface of the glass sample and then proceeds toward the interior of glass matrix. The morphology of 2CaO · Al2O3 · GeO2 is that of a subangular bell-shaped single crystal growing in a preferred orientation through the segregated phase matrix of fine dispersion of 3CaO · Al2O3 · 3GeO2 crystals. The Li2O · Al2O3 · 2GeO2 phase grows anisotropically in the fine fibrillar morphology and parallel to the [331].

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stookey, R. A., U.S. Patent 2,920,970, January 12 (1960).Google Scholar
2.Eppler, R. A., J. Am. Ceram. Soc. 46, 97 (1963).CrossRefGoogle Scholar
3.Doherty, P. E., Dee, D. W., and Davis, R. S., J. Am. Ceram. Soc. 50, 77 (1967).CrossRefGoogle Scholar
4.Ostertag, W., Fischer, G. R., and Williams, J. P., J. Am. Ceram. Soc. 51, 651 (1968).Google Scholar
5.Borom, M. P., Turkala, A. M., and Doremus, R. H., J. Am. Ceram. Soc. 58, 386 (1975).CrossRefGoogle Scholar
6.Bold, S. E. and Groves, G. W., J. Mater. Sci. 13, 611 (1978).CrossRefGoogle Scholar
7.Northover, J. P. and Groves, G. W., J. Mater. Sci. 16, 1874 (1981).Google Scholar
8.Dalac, K. H. and Raj, R., J. Am. Ceram. Soc. 64, 195 (1981).Google Scholar
9.Wang, M. L., Stevents, R., and Kuott, P., Glass Technol. 23, 238 (1982).Google Scholar
10.Karkhanavala, M. D. and Hummel, F. A., J. Am. Ceram. Soc. 36, 393 (1953).Google Scholar
11.Ray, S. and Muchow, G. M., J. Am. Ceram. Soc. 51, 678 (1968).CrossRefGoogle Scholar
12.El-Shennawi, A. W. A., Omar, A. A., and El-Ghannam, A. R., Ceram. Int. 17, 25 (1991).Google Scholar
13.Beall, G. H., Karstetler, B. R., and Rittler, H. L., J. Am. Ceram. Soc. 50, 638 (1967).Google Scholar
14.Wang, M. C., Hon, M. H., and Yen, F. S., J. Cryst. Growth 84, 638 (1987).Google Scholar
15.Wang, M. C., Hon, M. H., and Yen, F. S., J. Cryst. Growth 91, 155 (1988).CrossRefGoogle Scholar
16.Wang, M. C. and Hon, M. H., J. Ceram. Soc. Jpn. 98, 625 (1990).CrossRefGoogle Scholar
17.Wang, M. C. and Hon, M. H., J. Ceram. Soc. Jpn. 100, 1285 (1992).CrossRefGoogle Scholar
18.Wang, M. C. and Hon, M. H., Ceram. Int. 19, 223 (1993).Google Scholar
19.Wang, M. C. and Hon, M. H., J. Mater. Res. 8, 890 (1993).CrossRefGoogle Scholar
20.Aronne, A., Catauro, M., Pernice, P., and Marotta, A., Mater. Chem. Phys. 34, 86 (1993).CrossRefGoogle Scholar
21.McMillan, P. W., Glass-Ceramics, 2nd ed. (Academic Press, London, 1979), p. 36.Google Scholar
22.Tredway, W. K., Risbud, S. H., and Bergeron, C. G., in Nucleation and Crystallization in Glass, edited by Simmons, J. H., Uhlmann, D. R., and Beall, G. H. (Columbus, OH, 1982), pp. 163181.Google Scholar
23.Morotta, A., Buri, A., and Valenti, G. L., J. Mater. Sci. 13, 2483 (1979).Google Scholar
24.Wang, M. C., Wang, J. S., and Hon, M. H., Ceram. Int. 21, 113 (1995).CrossRefGoogle Scholar
25.Mazurin, O. V., Strel'tesina, M. V., and Totesh, A. S., Phys. Chem. Glasses 10, 63 (1969).Google Scholar
26.Mazurin, O. V. and Strel'tesina, M. V., J. Non-Cryst. Solids 11, 199 (1972).CrossRefGoogle Scholar
27.Lewis, M. H., Metcalf-Johansen, J., and Bell, P. S., J. Am. Ceram. Soc. 62, 5 (1978).Google Scholar
28.Copely, G. J., Mater. Sci. Eng. 8, 1 (1971).CrossRefGoogle Scholar
29.Harper, H., James, P. F., and McMillan, P. W., Discuss. Faraday Soc. 50, 206 (1970).CrossRefGoogle Scholar
30.Lewis, M. H. and Smith, G., J. Mater. Sci. 11, 2015 (1976).Google Scholar
31.Honeycombe, R. W. K., Steels—Microstructure and Properties (Edward Arnold, New York, 1981), pp. 6971.Google Scholar