Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T22:10:50.207Z Has data issue: false hasContentIssue false

Crystallization in SiO2–metal Oxide Alloys

Published online by Cambridge University Press:  31 January 2011

J-P. Maria
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
D. Wickaksana
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
J. Parrette
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
A. I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

HfO2–SiO2 and La2O3–SiO2 amorphous alloys were prepared, and their crystallization behavior was studied. The results suggest that higher permittivities can be achieved in the La-containing system without devitrification. The crystallization mechanisms between systems are distinctly different, yet observations are consistent with bulk material. Hf-containing materials tend toward phase separation, while La-containing materials tend toward silicate formation. For Hf-containing films, negligible thickness or time dependence was observed. In La-containing films, rapid thermal anneals could improve crystallization resistance, and thickness effects related to interface reactions were observed. These behaviors are discussed in the context of phase diagrams and metastable immiscibility.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association, S.I., The International Technology Roadmap for Semiconductors (Sematech, Austin, TX, 2000).Google Scholar
Copel, M., Cartier, E., and Ross, F.M., Appl. Phys. Lett. 78, 1607 (2001).CrossRefGoogle Scholar
Klein, T.M., Niu, D., Epling, W.S., Li, W., Maher, D.M., Hobbs, C.C., Hedge, R.I., I.Baumvol, J.R., and Parsons, G.N., Appl. Phys. Lett. 75, 4001 (1999).CrossRefGoogle Scholar
Lucovsky, G. and Phillips, J.C., Appl. Surf. Sci. 166, 497 (2000).CrossRefGoogle Scholar
Ono, H. and Katsumata, T., Appl. Phys. Lett. 78, 1832 (2001).CrossRefGoogle Scholar
Qi, W-J., Nieh, R., Dharmarajan, E., Lee, B.H., Jeon, Y., Kang, L., Onishi, K., and Lee, J.C., Appl. Phys. Lett. 77, 1704 (2000).CrossRefGoogle Scholar
Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys. 87, 484 (2000).CrossRefGoogle Scholar
Wilk, G.D., in Advanced Gate Oxide Dielectrics for Scaled CMOS (Santa Barbara, CA, 1999).Google Scholar
Chambers, J.J. and Parsons, G.N., Appl. Phys. Lett. 77, 2385 (2000).CrossRefGoogle Scholar
Guha, S., Cartier, E., Gribelyuk, M.A., Bojarczuk, N.A., and Copel, M.C., Appl. Phys. Lett. 77, 2710 (2000).CrossRefGoogle Scholar
Neumayer, D.A. and Cartier, E., J. Appl. Phys. 90, 1801 (2001).CrossRefGoogle Scholar
B.A. Inc., http://www.bruker-axs.com/production/indexie.htm (2001).Google Scholar
Lucovsky, G. and Rainer, G.B., Appl. Phys. Lett. 77, 2912 (2000).CrossRefGoogle Scholar
Becher, P. and Swain, M.V., J. Am. Ceram. Soc. 75, 493 (1992).CrossRefGoogle Scholar
Levine, E.M., Robbins, C.R., McMurdie, H.F., Phase Diagrams for Ceramists HfO2 P-T diagram (The American Ceramic Society, Columbus, OH, 1985), Vol. 3, Fig. 4256.Google Scholar
Ondik, H.M. and McMurdie, H.F., Phase Diagrams for Zirconium and Zirconia Systems, P-T diagram of ZrO2 (Am. Ceram. Soc., Columbus, OH, 1985), Vol. X, Figs. Zr-001, Zr-042, Zr-043, Zr-046.Google Scholar
Touloukian, Y.S., Thermophysical Properties of Matter, The TPRC Data Series, Vol. 13 (IFI/Plenum, New York).Google Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists ZrO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2400.Google Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists HfO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 3, Fig. 4443.Google Scholar
Curtis, C.E. and Sowman, H.G., J. Am. Ceram. Soc. 36, 190 (1953).CrossRefGoogle Scholar
Barlett, H.B., J. Am. Ceram. Soc. 14, 837 (1931).CrossRefGoogle Scholar
Murkherjee, S.P., Zarzycki, J., and Traverse, J.P., J. Mater. Sci. 11, 341 (1976).CrossRefGoogle Scholar
Decottignies, M., Phalippou, J., and Zarzycki, J., J. Mater. Sci. 13, 2605 (1978).CrossRefGoogle Scholar
Murkherjee, S.P. and Zarzycki, J., J. Am. Ceram. Soc. 62, 1 (1979).CrossRefGoogle Scholar
Stevens, H.J., in Introduction to Glass Science, edited by Pye, L.D., Stevens, H.J., and LaCourse, W.C. (Plenum Press, New York, 1972), Vol. 1, pp. 197235.CrossRefGoogle Scholar
Levine, E.M., Robbins, C.R., McMurdie, H.F., Roth, R.S., Negas, T., and Cook, L.P., Phase Diagrams for Ceramists Al2O3-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vols. 1, 4, 5, Figs. 313, 590, 6443, 6444.Google Scholar
Kingery, W.D., Bowen, H.K., and Uhlman, D.R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976).Google Scholar
McPherson, R. and Schafer, B.V., J. Mater. Sci. 19, 2696 (1984).CrossRefGoogle Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists UO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2399.Google Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists UO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 1, Fig. 360.Google Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists ThO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2397.Google Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists ZrO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 1, Figs. 361 and 362.Google Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists ThO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 1, Fig. 359.Google Scholar
Levine, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists La2O3-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2372.Google Scholar
Qi, W-J., Nieh, R., Lee, B.H., Onishi, K., Kang, L., Jeon, Y., Lee, J.C., Kaushik, V., Neuyen, B-Y., Prabhu, L., Eisenbeiser, K., and Finder, J., Digest of Tech. Papers, IEDM Symp. VLSI Technol. 40 (2000).Google Scholar
Lee, J.C., Qi, W., Lee, B.H., Kang, L., Onishi, K., Jeon, Y., and Dharmarjan, E., Results presented at the MRS Workshop on High-K Gate Dielectrics, New Orleans, LA, June 1–2 (2000).Google Scholar
Maria, J-P., Wicaksana, D., Kingon, A.I., Busch, B., Schulte, W.H., Garfunkel, E., and Gustafsson, T., J. Appl. Phys. 90, 3476 (2001).CrossRefGoogle Scholar
Stemmer, S. (2000, unpublished).Google Scholar
Glasser, F.P., Warshaw, I., and Roy, R., Phys. Chem. Glasses 1(2), 39 (1960).Google Scholar
Billman, C.A., Tan, P.H., Hubbard, K.J., and Schlom, D.G., Submitted to Mater. Res. Soc. Symp. Proc., Ultrathin SiO2 and High-K Materials for ULSI Gate Dielectrics (1999).Google Scholar
Maria, J-P. and Wicaksana, D., in These results correspond to measurements taken on (HfO2)1-x-(SiO2)x metal-insulator-metal structures. Films were fabricated in identical fashion as those for crystallization measurements with the exception that a Pt bottom electrode was used to facilitate accurate dielectric analysis. (2001).Google Scholar
Roberts, S., Ryan, J.G., and Martin, D.W., Emerging Semiconductor Technology (ASTM STP 960, ASTM, Philadelphia, 1986).Google Scholar
Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
Mahalingham, T., Radhakrishnan, M., and Balasubramanian, C., Thin Solid Films 78, 229 (1981).CrossRefGoogle Scholar
Maria, J-P. and Wicaksana, D., in These results correspond to measurements taken on (La2O3)1-x-(SiO2)x metal-insulatorsemiconductor structures. Films were fabricated in identical fashion as those for crystallization measurements with the exception that highly doped Si wafers were used to facilitate accurate dielectric analysis. (2001).Google Scholar
Chernobrovkin, D.I., Ten, V.S.-Gushev, and Bakhtinov, V.V., Radio Eng. Electron. Phys. 17, 334 (1972).Google Scholar
Powder Diffraction File: Inorganic Phases, Card #40-234 (La2SiO5), Vol. 40 (Swarthmore, PA, 1999).Google Scholar
Powder Diffraction File: Inorganic Phases, Card #8-342 (HfO2)(tet), Vol. 8 (Swarthmore, PA, 1999).Google Scholar
Powder Diffraction File: Inorganic Phases, Card #34-104 (HfO2)(mon), Vol. 34 (Swarthmore, PA, 1999).Google Scholar
Powder Diffraction File: Inorganic Phases, Card #5-602 (La2O3), Vol. 5 (Swarthmore, PA, 1999).Google Scholar