Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T23:45:14.674Z Has data issue: true hasContentIssue false

Crystallization kinetics of amorphous nanostructured Pd40.5Ni40.5P19 alloys

Published online by Cambridge University Press:  26 November 2012

H. W. Ngai
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, Peoples Republic of China
C. C. Leung
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, Peoples Republic of China
W. H. Guo
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, Peoples Republic of China
H. W. Kui
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, Peoples Republic of China
Get access

Abstract

When a homogeneous amorphous Pd40.5Ni40.5P19 alloy was subjected to thermal annealing for 30 min at various temperatures, novel microstructures were observed. At an annealing temperature of 603 K, phase separation of the amorphous phase dominated. At 628 K, a precipitation reaction proceeded first. After its completion, a eutectic growth set in. At 638 K, metastable spinodal decomposition occurred first, followed by a eutectic growth. Finally at 673 K, crystal growth of crystalline spinodal network was fast enough to compete with a eutectic growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Roskilde: Riso National Laboratory, 1981), p. 15.Google Scholar
2.Turnbull, D., Metall. Trans. B 12, 217 (1981).CrossRefGoogle Scholar
3.Birringer, R., Gleiter, H., Klein, H.P., and Marquardt, P., Phys. Lett. A 102, 365 (1984).CrossRefGoogle Scholar
4.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
5.Liu, W. and Johnson, W.L., J. Mater. Res. 11, 2388 (1996).CrossRefGoogle Scholar
6.Schneider, S., Thiyagarajan, P., and Johnson, W.L., Appl. Phys. Lett. 68, 493 (1996).CrossRefGoogle Scholar
7.Weertman, J.R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., and Van Swygenhoven, H., MRS Bulletin 24 (2), 44 (1999).CrossRefGoogle Scholar
8.Koch, C.C., Morris, D.G., Lu, K., and Inoue, A., MRS Bulletin 24 (2), 54 (1999).CrossRefGoogle Scholar
9.Yuen, C.W., Lee, K.L., and Kui, H.W., J. Mater. Res. 12, 314 (1997).CrossRefGoogle Scholar
10.Yuen, C.W. and Kui, H.W., J. Mater. Res. 13, 3034 (1998).CrossRefGoogle Scholar
11.Lee, K.L. and Kui, H.W., J. Mater. Res. 14, 3653 (1999).CrossRefGoogle Scholar
12.Cahn, J.W., Trans. Met. Soc. AIME. 242, 166 (1968).Google Scholar
13.Guo, W.H., Chua, L.F., Leung, C.C., and Kui, H.W., J. Mater. Res. 15, 1605 (2000).CrossRefGoogle Scholar
14.Guo, W.H. and Kui, H.W., Acta Mater. 48, 2117 (2000).CrossRefGoogle Scholar
15.Guo, W.H., Leung, C.C., and Kui, H.W., in Bulk Metallic Glasses, edited by Johnson, W.L., Inoue, A., and Liu, C.T. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1999), p. 211.Google Scholar
16.Leung, C.C., Guo, W.H., and Kui, H.W., Appl. Phys. Lett. 77, 64 (2000).CrossRefGoogle Scholar
17.Kui, H.W., Greer, A.L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
18.Yao, K.F. and Kui, H.W., J. Appl. Phy. 77, 2313 (2000).Google Scholar
19.Chen, H.S. and Turnbull, D., J. Chem. Phys. 48, 2560 (1968).CrossRefGoogle Scholar