Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T14:38:55.987Z Has data issue: false hasContentIssue false

Crystallization of various compositions in the Y2O3–SiO2 system

Published online by Cambridge University Press:  31 January 2011

Suresh Kumar*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Charles H. Drummond III
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
*
a)Present address: #120 Steidle Building, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802.
Get access

Abstract

In as-sintered silicon nitride with yttria as a sintering aid, the intergranular glassy phase contains Y, Si, O, and N. Results of crystallization of partly crystalline, as-quenched melt samples containing 28–40 mol% Y2O3 in the Y2O3–SiO2 system are presented. Three different compositions were melted in tungsten crucibles at 2100 °C in 1 and 50 atm nitrogen and heat treated in air in the temperature range of 1200 to 1600 °C. Phase identification by x-ray diffraction (XRD) and transmission electron microscopy (TEM) showed crystallization to β, γ, and δ polymorphs of Y2Si2O7.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Drew, R. A. L., Nitrogen Glass (The Parthenon Press, Lancashire, England, 1986).Google Scholar
2.Tsuge, A., Nishida, K., and Komatsu, M., J. Am. Ceram. Soc. 58, 323326 (1975).CrossRefGoogle Scholar
3.Falk, L. K. L. and Dunlop, G.L., J. Mater. Sci. 22, 43694376 (1987).CrossRefGoogle Scholar
4.Pierce, L. A., Mieskowski, D. M., and Sanders, W.A., J. Mater. Sci. 21 (4), 13451348 (1986).CrossRefGoogle Scholar
5.Lee, W.E., Drummond, C.H., III, Hilmas, G.E., and Kumar, S., J. Am. Ceram. Soc. 73 (12), 35753579 (1990).CrossRefGoogle Scholar
6.Raj, R., J. Am. Ceram. Soc. 64 (5), 245248 (1981).CrossRefGoogle Scholar
7.Raj, R. and Lange, F.F., Acta Metall. 201, 19932000 (1981).CrossRefGoogle Scholar
8.Lewis, M.H., Leng-Ward, G., and Jasper, C., Ceramic Powder Science II, Ceram. Trans. 1, Am. Ceram. Soc, 10191033 (1988).Google Scholar
9.Lewis, M.H., Tailoring Multiphase and Composite Ceramics (Plenum Press, New York, 1985), pp. 713730.Google Scholar
10.Leng-Ward, G. and Lewis, M.H., Mater. Sci. Eng. 71 (1–2), 101111 (1985).CrossRefGoogle Scholar
11.Sanders, W.A. and Mieskowski, D.M., J. Am. Ceram. Soc. 64 (2), 304309 (1985).Google Scholar
12.Messier, D. R., Ceram. Eng. Sci. Proc. 3 (9–10), 565576 (1982).CrossRefGoogle Scholar
13.Thomas, G., Ahn, C., and Weiss, J., J. Am. Ceram. Soc. 65 (11), C185–C188 (1982).CrossRefGoogle Scholar
14.Drummond, C. H., III, Lee, W. E., Sanders, W. A., and Kiser, J. D., Ceram. Eng. Sci. Proc. 9 (9–10), 13431353 (1988).CrossRefGoogle Scholar
15.Toropov, N.A. and Bondar, I. A., Izv. Akad. Nauk., SSSR, Otd. Khim. Nauk 4, 544550 (1961).Google Scholar
16.Bondar, I.A. and Toropov, N.A., Mater. Res. Bull. II, 479489 (1967).CrossRefGoogle Scholar
17.Liddell, K. and Thompson, D.P., Br. Ceram. Trans. J. 85 (1), 1722 (1986).Google Scholar
18.Batalieva, N. G. and Pyatenko, Y.A., Sov. Phys. Crystall. 16, 786789 (1971).Google Scholar
19.Dinger, T. R., Rai, R. S., and Thomas, G., J. Am. Ceram. Soc. 71 (4), 236244 (1988).CrossRefGoogle Scholar
20.Ito, J. and Johnson, H., Am. Min. 53, 19401952 (1968).Google Scholar
21.Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Inc., Reading, MA, 1978), pp. 501503.Google Scholar
22.Jones, G. O., Glass (Methuen, London, 1956), p. 32.Google ScholarPubMed
23.Kumar, S., Crystallization in Yttrium Silicate Glasses, M.S. Thesis, The Ohio State University, Columbus, OH, 1989.Google Scholar