Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T21:53:52.306Z Has data issue: false hasContentIssue false

Crystallization Phases of the Zr41Ti14Cu12.5Ni10Be22.5 Alloy After Slow Solidification

Published online by Cambridge University Press:  31 January 2011

Q. Wei
Affiliation:
Universität Potsdam, Institut für Berufspädagogik, Karl-Liebknecht-str. 24-25, D-14476, Golm, Germany
N. Wanderka*
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, 14109 Berlin, Germany
P. Schubert-Bischoff
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, 14109 Berlin, Germany
M-P. Macht
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, 14109 Berlin, Germany
S. Friedrich
Affiliation:
Universität Potsdam, Institut für Berufspädagogik, Karl-Liebknecht-str. 24-25, D-14476, Golm, Germany
*
b)e-mail: wanderka@hmi.de
Get access

Abstract

A systematic study was carried out on the equilibrium phases after slow solidification of the Zr41Ti14Cu12.5Ni10Be22.5 alloy. The crystalline microstructure of the slowly cooled melt of the alloy shows “polygons” and “plates” embedded in a fine-grained two-component matrix. To analyze the crystal structure of the different components, microdiffraction technique combining convergent beam electron diffraction and conventional selected-area electron diffraction were used. The stoichiometry of these phases was confirmed by field ion microscopy with atom probe and energy-dispersive x-ray analysis in a transmission electron microscope. The polygons were determined to be cubic (a = 1.185 nm) with space group Fm3m (cF116). The plates were found to be tetragonal (a = 0.37 nm, c = 1.137 nm) with space group I4/mmm (tI6). Its composition is (Cu + Ni)(Zr + Ti)2. One phase of the fine-grained two-component matrix was rich in Ti and poor in Be; the other one was rich in Be and poor in Ti. The Ti-rich phase was determined to be hexagonal (a = 0.536 nm, c = 0.888 nm) with space group P63/mmc.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W.L., Mater. Sci. Forum 225–227, 35 (1996).Google Scholar
2.Wiedenmann, A., Keiderling, U., Macht, M-P., and Wollenberger, H., Mater. Sci. Forum 225–227, 71 (1996).CrossRefGoogle Scholar
3.Macht, M-P., Wanderka, N., Wiedenmann, A., Wollenberger, H., Wei, Q., Fecht, H.J., and Klose, S.G., Mater. Sci. Forum 225–227, 65 (1996).Google Scholar
4.Schneider, S., Thiagarajan, P., Geyer, U., and Johnson, W.L., Physica B 241–243, 918 (1998).Google Scholar
5.Wanderka, N., Wei, Q., Sieber, I., Czubayko, U., and Macht, M-P., Mater. Sci. Forum 312–314, 369 (1999).Google Scholar
6.Wanderka, N., Wei, Q., Dole, R., Jenkins, M., Friedrich, S., Macht, M-P., and Wollenberger, H., Mater. Sci. Forum 269–272, 773 (1998).CrossRefGoogle Scholar
7.Fecht, H-J., in Structure and Dynamics of Glasses and Glass Formers, edited by Angell, C.A., Ngair, K.L., Kieffer, J., Egami, T., and Nienhaus, G.U. (Mater. Res. Soc. Symp. Proc. 455, Pittsburgh, PA, 1997), p. 455.Google Scholar
8.Schroers, J., Busch, R., Masuhr, A., and Jonson, W.L., Appl. Phys. Lett. 74, 2806 (1999).Google Scholar
9.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures (John Wiley and Sons, New York, 1974).Google Scholar
10.Buxton, B.F., Eades, J.A., Steeds, J.W., and Rackham, G.M., Philos. Trans. R. Soc. A 284, 171 (1976).Google Scholar
11.Demczyk, B.G. and Cheng, S.F., J. Magn. Mater. 88, 376 (1990).CrossRefGoogle Scholar
12.Morniroli, J.P. and Steeds, J.W., Ultramicroscopy 45, 219 (1992).Google Scholar
13.Redjaimia, A. and Morniroli, J.P., Ultramicroscopy 53, 305 (1994).Google Scholar
14.Mühlhausen, D., Schubert-Bischoff, P., Wei, Q., and Macht, M-P., in Progress in Metallography, edited by Kurz, M. and Pohl, M.M. (special edition of the Practical Metallography 27, Informationsgesellschaft Verlag Oberursel/FRG, 1995), p. 291.Google Scholar
15.Wanderka, N., Schuber-Bischoff, P., Naundorf, V., Macht, M-P., and Wollenberger, H., in Proceedings of the 11th european congress on electron microscopy, EUREM'96, T10, edited by Baumeister, W. and Cottell, D. (EUREM '96 U.C.D Belfield, Dublin 4, Ireland, 1996).Google Scholar
16.Macht, M-P., Wanderka, N., Wiedenmann, A., Wollenberger, H., Wei, Q., Klose, S., Sagel, A., and Fecht, H-J., in Thermodynamics and Kinetics of Phase Transformations, edited by Imn, J.S., Park, B., Greer, A.L., and Stephensen, G.B. (Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996), pp. 375380.Google Scholar
17.Macht, M-P., Wanderka, N., Wei, Q., Sieber, I., Deyneka, N., Proceedings of the tenth International Conference on Rapidly Quenched and Metastable Materials (RQ10), 23.8.–27.8, edited by Chattopadhyay, K. and Ranganathan, S. (Bangalore, India, in press).Google Scholar
18.Ganglberger, E., Nowotny, H., and Benesowsky, F., Monatsh. Chem. 96, 1206 (1965).Google Scholar
19.Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, Oxford, New York, 1967), Vol. 2, p. 93.Google Scholar
20.Macht, M-P., Wei, Q., Wanderka, N., Sieber, I., and Deyneka, N., Mater. Sci. Forum 343–346, 173 (2000).Google Scholar