Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T03:48:07.391Z Has data issue: false hasContentIssue false

A defect model for ion-induced crystallization and amorphization

Published online by Cambridge University Press:  31 January 2011

K. A. Jackson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Extensive experimental investigations have been reported on the ion-induced motion of the interface between the crystalline and amorphous phases of silicon. The crystal grows into the amorphous phase at low ion fluxes and high temperatures. The amorphous phase grows into the crystal at high ion fluxes and low temperatures. The experimental observations are shown to fit a model based on a single defect. The concentration of this defect decays by binary recombination, this is, two of the defects annihilate one another. The model accounts for the linear relationship between interface motion and reciprocal temperature, for the Arrhenius temperature dependence of the flux at which no interface motion occurs, and for the temperature independence of the crossover frequency observed in beam pulsing experiments. The defect on which this model is based has a motion energy of 1.2 eV. Assuming that the same defect is also responsible for thermal recrystallization of the amorphous phase gives a formation energy of 1.5 eV for the defect. The defect is believed to be a dangling bond in the amorphous phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Csepregi, W. K., Chu, W. K., Muller, H., Mayer, J. W., and Sigmon, T. W., Radiat. Eff. 28, 227 (1976).CrossRefGoogle Scholar
2Golecki, I., Chapman, G. E., Lau, S. S., Tsaur, B. Y., and Maher, J. W., Phys. Lett. A 71, 267 (1979).CrossRefGoogle Scholar
3Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., Mater. Res. Soc. Symp. Proc. 13, 141 (1983).Google Scholar
4Holmen, G., Hogberg, P., and Buren, A., Radiat, Eff. 24, 39 (1975).Google Scholar
5Holmen, G., Peterstrom, S., Buren, A., and Bogh, E., Radiat. Eff. 24, 45 (1975).CrossRefGoogle Scholar
6Linnros, J., Svensson, B., and Holmen, G., Phys. Rev. B 30, 3629 (1984).Google Scholar
7Linnros, J. and Holmen, G., Phys. Rev. B 32, 2770 (1985).Google Scholar
8Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
9Linnros, J., Ph. D. thesis, Chalmers University of Technology, Goteborg, Sweden, 1985.Google Scholar
10Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Mater. Res. Soc. Symp. Proc. 37, 127 (1985).Google Scholar
11Brown, W. L., Elliman, R. G., Knoell, R. V., Leiberich, A., Linnros, J., Maher, D. M., and Williams, J. S., in Microscopy of Semiconductor Materials, edited by Cullis, A. G. (Institute of Physics, London, 1987), p. 61.Google Scholar
12Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Knoell, R. V., Nucl. Instrum. Methods B 19/20, 435 (1987).CrossRefGoogle Scholar
13Leiberich, A., Mather, D. M., Knoell, R. V., and Brown, W. L., Nucl. Instrum. Methods B 19/20, 457 (1987).Google Scholar
14Brown, W. L., Linnros, J., and Elliman, R. G. (private communication, 1987).Google Scholar
15Linnros, J., Elliman, R. G., and Brown, W. L., Mater. Res. Soc. Symp. Proc. 74, 477 (1987).CrossRefGoogle Scholar
16Linnros, J., Brown, W. L., and Elliman, R. G., Mater. Res. Soc. Symp. Proc. 100, 369 (1988).Google Scholar
17Biersack, J. P. and Haggmark, L. J., Nucl. Instrum. Methods 174, 257 (1980).Google Scholar