Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T19:10:44.592Z Has data issue: false hasContentIssue false

Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts

Published online by Cambridge University Press:  03 March 2011

Hongda Cai
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001
Stevens Marion A. Kalceff
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001
Get access

Abstract

The Hertzian indentation response of a machinable mica-containing glass-ceramic is studied. Relative to the highly brittle base glass from which it is formed, the glass-ceramic shows evidence of considerable “ductility” in its indentation stress-strain response. Section views through the indentation sites reveal a transition from classical cone fracture outside the contact area in the base glass to accumulated subsurface deformation-microfracture in the glass-ceramic. The deformation is attributed to shear-driven sliding at the weak interfaces between the mica flakes and glass matrix. Extensile microcracks initiate at the shear-fault interfaces and propagate into the matrix, ultimately coalescing with neighbors at adjacent mica flakes to effect easy material removal. The faults are subject to strong compressive stresses in the Hertzian field, suggesting that frictional tractions are an important element in the micromechanics. Bend-test measurements on indented specimens show that the glass-ceramic, although weaker than its base glass counterpart, has superior resistance to strength degradation at high contact loads. Implications of the results in relation to microstructural design of glass-ceramics for optimal toughness, strength, and wear and fatigue properties are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Howes, V. R. and Tolansky, S., Proc. R. Soc. London A 230, 287293 (1955).Google Scholar
2Howes, V. R. and Tolansky, S., Proc. R. Soc. London A 230, 294301 (1955).Google Scholar
3Tillett, J. P., Proc. Phys. Soc. London B 69, 4754 (1956).Google Scholar
4Roesler, F. C., Proc. Phys. Soc. London B 69, 981 (1956).CrossRefGoogle Scholar
5Lawn, B. R. and Komatsu, H., Philos. Mag. 14, 689699 (1966).CrossRefGoogle Scholar
6Frank, F. C. and Lawn, B. R., Proc. R. Soc. London A 299, 291306 (1967).Google Scholar
7Lawn, B. R., J. Appl. Phys. 39, 48284836 (1968).Google Scholar
8Langitan, F. B. and Lawn, B. R., J. Appl. Phys. 40, 40094017 (1969).CrossRefGoogle Scholar
9Langitan, F. B. and Lawn, B. R., J. Appl. Phys. 41, 33573365 (1970).CrossRefGoogle Scholar
10Swain, M. V. and Lawn, B. R., Phys. Status Solidi 35, 909923 (1969).CrossRefGoogle Scholar
11Mikosza, A. G. and Lawn, B. R., J. Appl. Phys. 42, 55405545 (1971).CrossRefGoogle Scholar
12Wilshaw, T. R., J. Phys. D: Appl. Phys. 4, 15671581 (1971).CrossRefGoogle Scholar
13Nadeau, J. S., J. Am. Ceram. Soc. 56, 467472 (1973).Google Scholar
14Swain, M. V., Williams, J. S., Lawn, B. R., and Beek, J.J.H., J. Mater. Sci. 8, 11531164 (1973).CrossRefGoogle Scholar
15Lawn, B. R. and Wilshaw, T. R., J. Mater. Sci. 10, 10491081 (1975).CrossRefGoogle Scholar
16Swain, M. V. and Hagan, J. T., J. Phys. D: Appl. Phys. 9, 22012214 (1976).CrossRefGoogle Scholar
17Evans, A. G. and Wilshaw, T. R., Acta Metall. 24, 939956 (1976).CrossRefGoogle Scholar
18Lawn, B. R. and Marshall, D. B., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1978), Vol. 3, pp. 205229.Google Scholar
19Warren, R., Acta Metall. 26, 17591769 (1978).Google Scholar
20Lawn, B. R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).Google Scholar
21Hertz, H., Hertz's Miscellaneous Papers, Chaps. 5 and 6 (Macmillan, London, 1896).Google Scholar
22Zeng, K., Breder, K., and Rowcliffe, D. J., Acta Metall. 40, 26012605 (1992).Google Scholar
23Nadeau, J. S. and Rao, A. S., J. Can. Ceram. Soc. 41, 6367 (1972).Google Scholar
24Lawn, B. R., Wilshaw, T. R., Barry, T. I., and Morrell, R., J. Mater. Sci. 10, 179182 (1975).Google Scholar
25Chantikul, P., Bennison, S. J., and Lawn, B. R., J. Am. Ceram. Soc. 73, 24192427 (1990).Google Scholar
26Cai, H., Padture, N. P., Hooks, B. M., and Lawn, B. R., J. European Ceram. Soc. (in press).Google Scholar
27Deuerler, F., Knehans, R., and Steinbrech, R., in Science of Ceramics 13, Journal de Physique, Paris (1986), pp. Cl-617-621.Google Scholar
28Swanson, P. L., Fairbanks, C. J., Lawn, B. R., Mai, Y-W., and Hockey, B. J., J. Am. Ceram. Soc. 70, 279289 (1987).CrossRefGoogle Scholar
29Swanson, P. L., in Fractography of Glasses and Ceramics (The American Ceramic Society, Westerville, OH, 1988), Vol. 22, pp. 135155.Google Scholar
30Beauchamp, E. K. and Monroe, S. L., J. Am. Ceram. Soc. 72, 11791184 (1989).CrossRefGoogle Scholar
31Becher, P. F., J. Am. Ceram. Soc. 74, 255269 (1991).CrossRefGoogle Scholar
32Guiberteau, F., Padture, N. P., Cai, H., and Lawn, B. R., Philos. Mag. A 68, 10031016 (1993).CrossRefGoogle Scholar
33Guiberteau, F., Padture, N. P., and Lawn, B. R., J. Am. Ceram. Soc. (in press).Google Scholar
34McMillan, P. W., Glass-Ceramics (Academic Press, London, 1979).Google Scholar
35Chyung, C. K., Beall, G. H., and Grossman, D. G., in Electron Microscopy and Structure of Materials, edited by Thomas, G., Fulrath, R. M., and Fisher, R. M. (University of California Press, Berkeley, CA, 1972), pp. 11671194.CrossRefGoogle Scholar
36Chyung, K., Beall, G. H., and Grossman, D. G., in Proceedings of 10th International Glass Congress, No. 14 (The Ceramic Society of Japan, Tokyo, Japan, 1974), pp. 3340.Google Scholar
37Chyung, K., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1974), Vol. 2, pp. 495508.Google Scholar
38Beall, G. H., in Advances in Nucleation and Crystallization in Glasses, edited by Hench, L. L. and Freiman, S. W. (The American Ceramic Society, Westerville, OH, 1972), pp. 251261.Google Scholar
39Uno, T., Kasuga, T., and Nakajima, K., J. Am. Ceram. Soc. 74, 31393141 (1991).CrossRefGoogle Scholar
40Grossman, D. G., in Proceedings of the International Symposium on Computer Restorations, edited by Mormann, W. H. (Quintessence Publishing Co., Chicago, IL, 1991), pp. 103115.Google Scholar
41Fairbanks, C. J., Lawn, B. R., Cook, R. F., and Mai, Y-W., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1986), Vol. 8, pp. 2337.Google Scholar
42Mulhearn, T. O., J. Mech. Phys. Solids 7, 8596 (1959).Google Scholar
43Cook, R. F., Lawn, B. R., and Fairbanks, C. J., J. Am. Ceram. Soc. 68, 604615 (1985).CrossRefGoogle Scholar
44Tabor, D., Hardness of Metals (Clarendon, Oxford, 1951).Google Scholar
45Johnson, K. L., Contact Mechanics (Cambridge University Press, London, 1985).CrossRefGoogle Scholar
46Benbow, J. J., Proc. Phys. Soc. London 75, 697699 (1960).Google Scholar
47Williams, J. S., Lawn, B. R., and Swain, M. V., Phys. Status Solidi A 2, 729 (1970).Google Scholar
48Jaeger, J. C. and Cook, N. G. W., Fundamentals of Rock Mechanics (Chapman and Hall, London, 1971).Google Scholar
49Paterson, M. S., Experimental Rock Deformation-The Brittle Field (Springer-Verlag, Berlin, 1978).Google Scholar
50Kranz, R. L., Tectonophysics 100, 449480 (1983).Google Scholar
51Myer, L. R., Kemeny, J. M., Zheng, Z., Suarez, R., Ewy, R. T., and Cook, N.G.W., Appl. Mech. Rev. 45, 263280 (1992).CrossRefGoogle Scholar
52van der Zwagg, S., Hagan, J. T., and Field, J. E., J. Mater. Sci. 15, 29652972 (1980).CrossRefGoogle Scholar
53Wan, K-T., Aimard, N., Lathabai, S., Horn, R. G., and Lawn, B. R., J. Mater. Res. 5, 172182 (1990).CrossRefGoogle Scholar
54Wan, K-T. and Lawn, B.R., Acta Metall. 38, 20732083 (1990).Google Scholar
55Wan, K-T., Smith, D. T., and Lawn, B. R., J. Am. Ceram. Soc. 75, 667676 (1992).Google Scholar
56Horii, H. and Namat-Nasser, S., J. Geophys. Res. 90, 31053125 (1985).CrossRefGoogle Scholar
57Ashby, M. F. and Hallam, S. D., Acta Metall. Mater. 34, 497510 (1986).Google Scholar
58Lawn, B. R., Padture, N. P., Guiberteau, F., and Cai, H., Acta Metall. (in press).Google Scholar
59Lawn, B. R., Padture, N. P., Braun, L. M., and Bennison, S. J., J. Am. Ceram. Soc. 76, 22352240 (1993).CrossRefGoogle Scholar
60Padture, N. P., Runyan, J. L., Bennison, S. J., Braun, L. M., and Lawn, B. R., J. Am. Ceram. Soc. 76, 22412247 (1993).CrossRefGoogle Scholar
61Cai, H., Stevens Kalceff, M.A., and Lawn, B.R., J. Mater. Res. (unpublished research).Google Scholar
62Lathabai, S., Rödel, J., and Lawn, B.R., J. Am. Ceram. Soc. 74, 13401348 (1991).CrossRefGoogle Scholar