Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T23:29:31.076Z Has data issue: true hasContentIssue false

Deformation and microstructural changes in SiC whisker-reinforced Si3N4 composites

Published online by Cambridge University Press:  31 January 2011

D.A. Koester
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
K.L. More
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6064
R.F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Get access

Abstract

Constant stress compressive creep studies have been conducted on hot-pressed Si3N4 containing 30 vol. % SiC whiskers and an initial vitreous phase composed of Al2O3, Y2O3, and SiO2. The conditions of temperature and stress were 1470–1670 K and 50–350 MPa, respectively; the atmosphere was purified N2 at 1 atm. Significant changes in the stress exponent and activation energy indicate a change in the controlling creep mechanism at ≍225 MPa and 1570 K. Prolonged annealing in the unstressed condition reduced creep rates but had little effect on the stress exponent values. Transmission and scanning electron microscopy revealed that the break in the stress exponent curves was caused by the removal of the amorphous material at the grain boundary and resulting contacts between Si3N4 grains. The break in the activation energy curves is believed to be similarly related. Analysis of all the data indicates that the composite creeps via grain boundary sliding accommodated by viscous flow at low stresses and temperatures and by diffusion at high stresses and temperatures. The contributions of these two mechanisms varied measurably as a function of stress and temperature. No cavitation was observed. The presence of the SiC whiskers had no observable effect on deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shalek, P. D., Petrovic, J. J., Hurley, G. F., and Gac, F. D., Am. Ceram. Soc. Bull. 65, 351 (1986).Google Scholar
2.Buljan, S. T., Baldoni, J. G., and Huckabee, M. L., Am. Ceram. Soc. Bull. 66, 347 (1987).Google Scholar
3.Nixon, R. D., Chevacharoenkul, S., Huckabee, M. L., Buljan, S. T., and Davis, R. F., in Advances in Structural Ceramics, edited by Becher, P. F., Swain, M. V., and Sōmiya, S. (Mater. Res. Soc. Symp. Proc. 78, Pittsburgh, PA, 1987), p. 295.Google Scholar
4.Nixon, R., Koester, D., Chevacharoenkul, S., and Davis, R., Comp. Sci. Tech. 37, 313328 (1990).CrossRefGoogle Scholar
5.Backhaus-Ricoult, M., Castaing, J., and Routbort, J. L., Revue Phys. Appl. 23 (3), 239249 (1988).CrossRefGoogle Scholar
6.Baldoni, J. G. and Buljan, S. T., Proc. 3rd Int. Symp. on Ceramic Materials and Components for Engines, edited by Tennery, V. J. (Am. Ceram. Soc., 1989), pp. 786795.Google Scholar
7.Hockey, B. J., Wiederhorn, S. M., Liu, W., Baldoni, J. G., and Buljan, S. T., J. Mater. Sci. (in press).Google Scholar
8.Lou, L. K. V., Mitchell, T. E., and Heuer, A. H., J. Amer. Ceram. Soc. 61, 392 (1978).CrossRefGoogle Scholar
9.Clarke, D. R., Zaluzec, N. J., and Carpenter, R. W., J. Amer. Ceram. Soc., 64, 601 and 608 (1981).CrossRefGoogle Scholar
10.Clarke, D. R., J. Amer. Ceram. Soc., 72, 1604 (1989).CrossRefGoogle Scholar
11.Bando, Y., Mitomo, M., and Kitami, Y., J. Electron. Microsc. 35, 371 (1986).Google Scholar
12.Kossowsky, R., Miller, D. G., and Diaz, E. S., J. Mater. Sci. 10, 983 (1975).CrossRefGoogle Scholar
13.Din, S. U. and Nicholson, P. S., J. Mater. Sci. 10, 1375 (1975).Google Scholar
14.Lange, F. F., Davis, B. I., and Clarke, D. R., J. Mater. Sci., 15, 601 and 611 (1980).CrossRefGoogle Scholar
15.Pasto, A. E., Van Schalkwyk, W. C., and Mahoney, F. M., in Proc. 3rd Int. Symp. on Ceramic Materials and Components for Engines, edited by Tennery, V. J. (Am. Ceram. Soc, 1989), p. 776.Google Scholar
16.Crampon, J., Duclos, R., Rakotohavisoa, N., Bigay, Y., Cales, B., and Torre, J. P., Sci. of Sint. 14, 575 (1990).Google Scholar
17.Tsuge, A., Nishida, K., and Komatsu, M., J. Am. Soc. 58 (78), 323–326 (1975).Google Scholar
18.Tsuge, A. and Nishida, K., Am. Soc. Bull. 57 (4), 424431 (1978).Google Scholar
19.Karunaratne, B. S. B. and Lewis, M. H., J. Mater. Sci. 15, 449462 (1980).CrossRefGoogle Scholar
20.Richerson, D. W. and Wimmer, J. M., J. Am. Ceram. Soc. 66, C173 (1983).CrossRefGoogle Scholar
21.More, K. L., Koester, D. A., and Davis, R. F., to be published in Ultramicroscopy.Google Scholar
22.Nutt, S. R., J. Am. Ceram. Soc. 71 (3), 149156 (1988).CrossRefGoogle Scholar
23.Nutt, S. R., J. Am. Ceram. Soc. 67 (11), 715720 (1984).CrossRefGoogle Scholar
24.Sharma, N. K., Williams, W. S., and Zangwill, A., J. Am. Ceram. Soc. 67 (11), 715720 (1984).CrossRefGoogle Scholar
25.Carter, C. H., Jr., Stone, C. A., Davis, R. F., and Schaub, D. R., Rev. Sci. Instrum. 51 (10), 13521357 (1980).CrossRefGoogle Scholar
26.Dorn, J. E., National Physical Laboratory Symposium (HMSO, London, 1954), pp. 89138.Google Scholar
27.Ahn, C. C. and Thomas, G., J. Am. Ceram. Soc. 66 (1), 1417 (1983).CrossRefGoogle Scholar
28.Tsuge, A., Kudo, H., and Komeya, K., J. Am. Ceram. Soc. 57, 269 (1974).CrossRefGoogle Scholar
29.Wills, R. R., Holmquist, S., Wimmer, J. M., and Cunningham, J. A., J. Mater. Sci. 11, 1305 (1976).CrossRefGoogle Scholar
30.Ito, J. and Johnson, H., Am. Mineral. 53, 1940 (1968).Google Scholar
31.Kuroda, K., Liu, H. C., Heuer, A. H., and Mitchell, T. E., in Proc.40th Ann. Meet. Electron. Micrs. Soc. Am., edited by Bailey, G. W. (San Francisco Press, 1982), p. 558.Google Scholar
32.Singhal, S. C., Ceramurgia Int. 2, 123 (1976).CrossRefGoogle Scholar
33.Clarke, D. R., J. Am. Ceram. Soc. 66, 92 (1983).CrossRefGoogle Scholar
34.Clarke, D. R., J. de Physique, C4, 51 (1985).Google Scholar
35.Clarke, D. R., J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
36.Clarke, D. R., J. Am. Ceram. Soc. 72, 1604 (1989).CrossRefGoogle Scholar
37.Ya. Nekrasov, I. and Kashirtseva, G. A., Dokl. Earth Sci. Sect. 231, 166 (1976).Google Scholar
38.Batlieva, N. G., Bondar, I. A., Sidorenko, G. A., and Toropov, N. A., Dokl. Acad. Nauk. SSSR 173, 339 (1967).Google Scholar
39.Liddell, K. and Thompson, D. P., Trans. Br. Ceram. Soc. 85, 17 (1986).Google Scholar
40.Batha, H. D. and Whitney, E. D., J. Am. Ceram. Soc. 56, 365 (1973).CrossRefGoogle Scholar
41.Kijima, K. and Shirasaki, S., J. Chem. Phys. 65, 2668 (1976).CrossRefGoogle Scholar
42.Cooper, A. R. and Major, L. D., NTIS Rep. AD-A-069004, 1979.Google Scholar