Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T16:58:56.601Z Has data issue: false hasContentIssue false

Deformation, recovery, and recrystallization behavior of nanocrystalline copper produced from solution-phase synthesized nanoparticles

Published online by Cambridge University Press:  31 January 2011

R. Suryanarayanan
Affiliation:
Materials Science and Engineering Program, Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130–4899
Claire A. Frey
Affiliation:
Materials Science and Engineering Program, Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130–4899
Shankar M. L. Sastry
Affiliation:
Materials Science and Engineering Program, Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130–4899
Benjamin E. Waller
Affiliation:
Department of Chemistry, Washington University, St. Louis, Missouri 63130–4899
William E. Buhro
Affiliation:
Department of Chemistry, Washington University, St. Louis, Missouri 63130–4899
Get access

Abstract

Nanocrystalline copper produced by a solution-phase chemistry approach and compacted by hot pressing was subjected to room temperature deformation. Uniaxial compression and rolling were used to deform the samples to °90% reduction in thickness. Samples were subjected to several heat treatments to study microstructure and property evolution as a function of heat treatment. Thermal response of the as-pressed and deformed nanocrystalline Cu was also studied by differential scanning calorimetry. Optical metallography, scanning and transmission electron microscopy, and selected area diffraction were used to characterize microstructures after heat treatments. Samples exhibited an endotherm upon heating at 322 °C which was reversible upon cooling. This was attributed to either dissolution and formation of Cu–B precipitates or the diffusion of B from the grain boundaries to the bulk and back to the grain boundaries. Exaggerated recrystallization occurs in the temperature range of 399–422 °C. Samples maintained high dislocation density, deformation bands, and fine grain size up to 322 °C. Beyond the recrystallization temperature, grains grew at a faster rate to submicron or micron levels. The strain hardening observed in the samples of the present study is attributed to the presence of boron. Two mechanisms are suggested for the role of B: (i) segregation of B to the grain boundaries leading to strengthening of grain boundaries, and (ii) formation of Cu–B nanoprecipitates leading to precipitation strengthening.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jang, J. S. C. and Koch, C. C., Scripta Metall. Mater. 24, 1675 (1990).CrossRefGoogle Scholar
2.Nieman, G. W., Weertman, J.R., and Siegel, R. W., Scripta Metall. Mater. 23, 2013 (1989).CrossRefGoogle Scholar
3.Bohn, R., Haubold, T., Birringer, R., and Gleiter, H., Scripta Metall. 25, 811 (1991).CrossRefGoogle Scholar
4.Provenzano, V., Louat, N. P., Imam, M. A., and Sadananda, K., Nanostructured Mater. 1, 89 (1992).CrossRefGoogle Scholar
5.Ding, B. Z., Tong, H. Y., Jiang, H. G., Wang, J. T., and Wei, W. D., Scripta Metall. 28, 1107 (1993).CrossRefGoogle Scholar
6.Palumbo, G., Thorpe, S. J., and Aust, K. T., Scripta Metall. 24, 2347 (1990).CrossRefGoogle Scholar
7.El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T., Scripta Metall. 27, 1185 (1992).CrossRefGoogle Scholar
8.Cheung, C., Palumbo, G., and Erb, U., Scripta Metall. 31, 735 (1994).CrossRefGoogle Scholar
9.Lu, K., Wei, W. D., and Wang, J.T., Scripta Metall. Mater. 24, 2319 (1990).CrossRefGoogle Scholar
10.Christman, T. and Jain, M., Scripta Metall. 25, 767 (1991).CrossRefGoogle Scholar
11.Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
12.Chang, H., Hofler, H. J., Alstetter, C. J., and Averback, R. S., Scripta Metall. Mater. 25, 1161 (1991).CrossRefGoogle Scholar
13.Languillaume, J., Chmelik, F., Kapelski, G., Bordeaux, F., Nazarov, A. A., Canova, G., Esling, C., Valiev, R. Z., and Baudelet, B., Acta Metall. Mater. 41 (10), 2953 (1993).CrossRefGoogle Scholar
14.Fougere, G. E., Weertman, J. R., Siegel, R. W., and Kim, S., Scripta Metall. 26, 1879 (1992).CrossRefGoogle Scholar
15.Weertman, J. R., Niedzielke, M., and Youngdahl, C., Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructure, edited by Natasi, M.et al. (Kluwer Academic Publishers, The Netherlands, 1993), p. 241.Google Scholar
16.Weertman, J. R. and Sanders, P. G., Solid State Phenomena 3536, 249 (1994).Google Scholar
17.Valiev, R. Z., Kozlov, E. V., Ivanov, Yu. F., Lian, J., Nazarov, A. A., and Baudelet, B., Acta Metall. 42 (7), 2467 (1994).CrossRefGoogle Scholar
18.Jain, M. and Christman, T., Acta Metall. 42 (6), 1901 (1994).CrossRefGoogle Scholar
19.Gifkins, R. C., J. Mater. Sci. 13, 1926 (1978).CrossRefGoogle Scholar
20.Nieman, G. W., Weertman, J. R., and Siegel, R., in Microcomposites and Nanophase Materials, edited by Van Aken, D. C., Was, G. S., and Ghosh, A. K. (TMS, Warrendale, PA, 1991), p. 15.Google Scholar
21.Bates, S. E., Ph. D. Dissertation, Washington University, St. Louis, MO (1994).Google Scholar
22.Suryanarayanan, R., Frey, C. A., Sastry, S. M. L., Waller, B. E., Bates, S. E., and Buhro, W. E., J. Mater. Res. 11, 439448 (1996).CrossRefGoogle Scholar
23.Honeycombe, R.W.K., The Plastic Deformation of Metals (Cambridge University Press, Cambridge, 1984).Google Scholar
24.Gryaznov, V. G., Kaprelov, A. M., and Romanov, A. E., Scripta Metall. 23, 1443 (1989).CrossRefGoogle Scholar
25.Gryaznov, V. G. and Trusov, L. I., Prog. Mater. Sci. 37, 289 (1993).CrossRefGoogle Scholar
26.Hariprasad, S., Sastry, S. M. L., and Jerina, K. L., Acta Metall. Mater. (1995, in press).Google Scholar
27.Higashi, I., Takahashi, Y., and Atoda, T., J. Less-Comm. Metal. 37, 199 (1974).CrossRefGoogle Scholar
28.CRC Handbook of Chemistry and Physics, edited by D. R. Lide (CRC Press, Boca Raton, FL, 1994).Google Scholar
29.Hondros, E. D. and Seah, M. P., Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (Elsevier, Amsterdam, 1983), p. 855.Google Scholar
30.Hofler, H. J., Averback, R. S., and Gleiter, H., Philos. Mag. Lett. 68(2), 99 (1993).CrossRefGoogle Scholar
31.Liu, C. T., White, C. L., and Horton, J.A., Acta Metall. 33, 1587 (1985).CrossRefGoogle Scholar
32.Miller, M. K. and Horton, J.A., J. de Phys. C7, 263 (1986).Google Scholar
33.Wang, W., Zhang, S., and He, X., Acta Metall. Mater. 43(4), 1693 (1995).CrossRefGoogle Scholar
34.Aust, K. T., Hanneman, R. E., Niessen, P., and Westbrook, J. H., Acta Metall. 16, 291 (1968).CrossRefGoogle Scholar
35.Karlsson, L. and Norden, H., Acta Metall. 36, 35 (1988).CrossRefGoogle Scholar