Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T03:22:04.007Z Has data issue: false hasContentIssue false

Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates

Published online by Cambridge University Press:  30 July 2012

Jan Prochazka
Affiliation:
J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic
Ladislav Kavan*
Affiliation:
J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic
Marketa Zukalova
Affiliation:
J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic
Pavel Janda
Affiliation:
J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic
Jaromir Jirkovsky
Affiliation:
J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic
Zuzana Vlckova Zivcova
Affiliation:
J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic
Ales Poruba
Affiliation:
Solartec s.r.o., CZ-756 61 Rožnov pod Radhoštěm, Czech Republic
Mélanie Bedu
Affiliation:
SOLVIONIC S.A. Chemin de la Loge, F-31078 Toulouse, France
Markus Döbbelin
Affiliation:
IK4-CIDETEC, Donostia-San Sebastian 20009, Spain
Ramón Tena-Zaera
Affiliation:
IK4-CIDETEC, Donostia-San Sebastian 20009, Spain
*
a)Address all correspondence to this author. e-mail: kavan@jh-inst.cas.cz
Get access

Abstract

Exceptionally dense titanium dioxide (TiO2) films were prepared via dip coating from a sol containing poly(hexafluorobutyl methacrylate) as the structure-directing agent. The films were grown on glass, F-doped SnO2, and crystalline silicon (111) faces, either pure or with a thin layer of SiO2. The TiO2 films cover perfectly even rough surfaces, which was ascribed to thixotropic properties of the precursor gel. The films provide antireflection function to crystalline Si wafers for photovoltaic applications. The optical reflectance in visible to near-infrared (NIR) wave lengths region is considerably smaller for Si wafers covered by TiO2/SiO2 film compared with that of SiO2/Si. The dense TiO2 films are amorphous with small amount of anatase and monoclinic TiO2(B). These two phases withstand calcination at 900 °C in films deposited on Si. For comparison, porous TiO2 films were grown by the same dip-coating protocol, but with alternative organic additives, either polymers or ionic liquids.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials. Chem. Rev. 107, 2891 (2007).Google Scholar
O’Regan, B. and Grätzel, M.: A low-cost high efficiency solar cell based on dye-sensitized titanium dioxide. Nature 353, 737 (1991).CrossRefGoogle Scholar
Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).Google Scholar
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010).Google Scholar
Kavan, L., O’Regan, B., Kay, A., and Grätzel, M.: Preparation of TiO2 (Anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J. Electroanal. Chem. 346, 291 (1993).CrossRefGoogle Scholar
Kavan, L. and Grätzel, M.: Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochim. Acta 40, 643 (1995).CrossRefGoogle Scholar
Cameron, P.L., Peter, L.M., and Hore, S.: How important is the back Reaction of electrons via substrate in dye sensitized solar cells? J. Phys. Chem. B 109, 930 (2005).Google Scholar
Bach, U., Lupo, D., Comte, P., Moser, J., Weissortel, F., Salbeck, J., Spreitzer, H., and Grätzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells. Nature 395, 583 (1998).Google Scholar
Snaith, H.J., Moule, A.J., Klein, C., Meerholz, K., Friend, R.H., and Grätzel, M.: Efficiency enhancement in solid state DSC. Nano Lett. 7, 3372 (2007).CrossRefGoogle Scholar
Burke, A., Ito, S., Snaith, H.J., Bach, U., Kwiatkowski, J., and Grätzel, M.: The function of TiO2 compact layer. Nano Lett. 8, 977 (2008).Google Scholar
Prochazka, J., Kavan, L., Zukalova, M., Frank, O., Kalbac, M., Zukal, A., Klementova, M., Carbonne, D., and Grätzel, M.: Novel synthesis of the TiO2(B) multilayer templated films. Chem. Mater. 21, 1457 (2009).Google Scholar
Prochazka, J., Kavan, L., Shklover, V., Zukalova, M., Frank, O., Kalbac, M., Zukal, A., Pelouchova, H., Janda, P., Mocek, K., Klementova, M., and Carbonne, D.: Multilayer films from templated TiO2 and structural changes during their thermal treatment. Chem. Mater. 20, 2985 (2008).CrossRefGoogle Scholar
Crossland, E.J.W., Nedelcu, M., Ducati, C., Ludwigs, S., Hillmyer, M.A., Steiner, U. and Snaith, H.J.: Block copolymer morphologies in dye-sensitized solar cells. Nano Lett. 9, 2813 (2009).CrossRefGoogle ScholarPubMed
Crossland, E.J.W., Kamperman, M., Nedelcu, M., Ducati, C., Wiesner, U., Smilgies, D.M., Toombbes, G.E.S., Hillmyer, M.A., Ludwigs, S., Steiner, U., and Snaith, H.J.: A bicontinuous double gyroid hybrid solar cell. Nano Lett. 9, 2807 (2009).Google Scholar
Singh, R.P., Manandhar, S., and Shreeve, J.M.: New dense fluoroalkyl-substituted imidazolium ionic liquids. Tetrahedron Lett. 43, 9497 (2002).Google Scholar
Zukalova, M., Zukal, A., Kavan, L., Nazeeruddin, M.K., Liska, P., and Grätzel, M.: Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 5, 1789 (2005).Google Scholar
Zukalova, M., Prochazka, J., Zukal, A., Yum, J.H., Kavan, L., and Grätzel, M.: Organized mesoporous TiO2 films stabilized by phosphorus: Application for dye-sensitized solar cells. J. Electrochem. Soc. 157, H99 (2010).Google Scholar
Wessel, C., Zhao, L., Urban, S., Ostermann, R., Djerdj, I., Smarsly, B.M., Chen, L., Hu, Y.S., and Sallard, S.: Ionic liquid synthetic route of TiO2(B) nanoparticles for functionalized materials. Chem. Eur. J. 17, 775 (2011).Google Scholar
Zukalova, M., Kalbac, M., Kavan, L., Exnar, I., and Grätzel, M.: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005).CrossRefGoogle Scholar
Kavan, L., Bacsa, R., Tunckol, M., Serp, P., Zakeeruddin, S.M., Le Formal, F., Zukalova, M., and Grätzel, M.: Multiwalled carbon nanotubes functionalized by carboxylic groups: Activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical Li-storage. J. Power Sources 195, 5360 (2010).Google Scholar
Fattakhova-Rohlfing, D., Wark, M., Brezesinski, T., Smarsly, B.M., and Rathousky, J.: Highly organized mesoporous TiO2 films. Adv. Funct. Mater. 17, 123 (2007).CrossRefGoogle Scholar
Kavan, L.: Electrochemistry of titanium dioxide: Some aspects and highlights. Chem. Rec. 12, 131 (2012).Google Scholar
Kim, D.J., Hahn, S.H., Oh, S.H., and Kim, E.J.: Influence of calcination temperature on the structural and optical properties of TiO2 thin films. Mater. Lett. 57, 355 (2002).Google Scholar
Jang, K., Zakutayev, A., Stoweres, J., Anderson, M.D., Tate, J., McIntyre, D.H., Johnson, D.C., and Keszler, D.A.: Low-temperature solution processing of TiO2. Solid State Sci. 11, 1692 (2009).Google Scholar
Yahia, M.B., Lemoigno, F., Beuvier, T., Filhol, J.S., Plouet, M.R., Brohan, L., and Doublet, M.L.: Updated references for TiO2(B). J. Chem. Phys. 130, 204501 (2009).Google Scholar
Kavan, L., Stoto, T., Grätzel, M., Fitzmaurice, D., and Shklover, V.: Quantum size effects in thin Semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCl3. J. Phys. Chem. 97, 9493 (1993).Google Scholar
Mechiakh, R., Ben Sedrine, N., Ben Naceur, J., and Chtorou, R.: Elaboration and characterization of nanocrystalline TiO2 thin films. Surf. Coat. Technol. 206, 243 (2011).CrossRefGoogle Scholar
Supplementary material: File

Prochazka et al. supplementary material

Tables and figures

Download Prochazka et al. supplementary material(File)
File 3 MB