Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T16:55:11.141Z Has data issue: false hasContentIssue false

Deposition of rare earth tantalate buffers on textured Ni-W substrates for YBCO coated conductor using chemical solution deposition approach

Published online by Cambridge University Press:  01 March 2006

M.S. Bhuiyan*
Affiliation:
Chemical Sciences Divison, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100
M. Paranthaman
Affiliation:
Chemical Sciences Divison, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100
A. Goyal
Affiliation:
Metals and Ceramics Divison, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6116
L. Heatherly
Affiliation:
Metals and Ceramics Divison, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6116
D.B. Beach
Affiliation:
Chemical Sciences Divison, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6100
*
a) Address all correspondence to this author. e-mail: s9r@ornl.gov
Get access

Abstract

Epitaxial films of rare-earth (RE = La, Ce, Eu, and Gd) tantalates, RE3TaO7 with pyrochlore structures were grown on biaxially textured nickel-3 at.% tungsten (Ni-W) substrates using chemical solution deposition (CSD) process. Precursor solution of 0.3∼0.4 M concentration of total cations were spin coated on to short samples of Ni-W substrates and the films were crystallized at 1050∼1100 °C in a gas mixture of Ar- 4% H2 for 15 to 60 min. X-ray studies show that the films of pyrochlore RE tantalate films are highly textured with cube-on-cube epitaxy. Improved texture was observed in case of lanthanum tantalate (La3TaO7) film grown on Ni-W substrates. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigations of RE3TaO7 films reveal a fairly dense and smooth microstructure without cracks and porosity. The rare-earth tantalate layers may be potentially used as buffer layers for YBa2Cu3O7-δ (YBCO) coated conductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sathyamurthy, S., Paranthaman, M., Zhai, H.Y, Kang, S., Aytug, T., Cantoni, C., Leonard, K.J., Payzant, E.A., Christen, H.M., Goyal, A., Li, X., Schoop, U., Kodenkandath, T., Rupich, M.W.: Chemical solution deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. J. Mater. Res. 19, 2117 (2004).CrossRefGoogle Scholar
2.Subramanian, M.A., Aravamudan, G., Rao, G.V. Subba: Oxide pyrochlores—A review. Prog. Solid State Chem. 15, 55 (1983).Google Scholar
3.Cann, D.P., Randall, C.A., Shrout, T.R.: Investigation of the dielectric properties of bismuth pyrochlores. Solid State Commun. 100, 529 (1996).Google Scholar
4.Valant, M., Davies, P.K.: Crystal chemistry and dielectric properties of chemically substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2(Zn2/3Nb4/3)O7 pyrochlores. J. Am. Ceram. Soc. 83, 147 (2000).CrossRefGoogle Scholar
5.Goodenough, J.B., Castellano, R.N.: Defect pyrochlores as catalyst supports. J. Solid State Chem. 44, 108 (1982).CrossRefGoogle Scholar
6.Korf, S.J., Koopmans, H.J.A., Lippens, B.C., Burggraaf, A.J., Gellings, P.J.: Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure. CO oxidation on some compounds derived from Gd2Zr2O7. J. Chem. Soc., Faraday Trans. 1. 83, 1485 (1987).Google Scholar
7.Tuller, H.L.: Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds. Solid State Ionics. 52, 135 (1992).CrossRefGoogle Scholar
8.Kramer, S., Spears, M., Tuller, H.L.: Conduction in titanate pyrochlores: Role of dopants. Solid State Ionics 72, 59 (1994).CrossRefGoogle Scholar
9.Heremans, C., Wuensch, B.J., Stalick, J.K., Prince, E.: Fast-ion conducting Y2(Zry Ti1-y )2O7 pyrochlores: Neutron rietveld analysis of disorder induced by Zr substitution. J. Solid State Chem. 117, 108 (1995).Google Scholar
10.Maloney, M.J.: Thermal barrier coating systems and materials. U.S. Patent No. 6,117,560 (2000).Google Scholar
11.Maloney, M.J.: Thermal barrier coating systems and materials. U.S. Patent No. 6,177,200 B1 (2001).Google Scholar
12.Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diazdelarubia, T., Hobbs, L.W., Kinoshita, C., Matzke, H.J., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434 (1998).Google Scholar
13.Ewing, R.C., Lutze, W., Weber, W.J.: Zircon: A host-phase for the disposal of weapons plutonium. J. Mater. Res. 10, 243 (1995).CrossRefGoogle Scholar
14.Ewing, R.C., Weber, W.J., Clinard, F.W. Jr.: Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 29, 63 (1995).CrossRefGoogle Scholar
15.Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., Hartmann, T.: Radiation tolerance of complex oxides. Science 289, 748 (2000).Google Scholar
16.Rupich, M.W., Liu, Y.P., Ibechem, J.: Low-temperature formation of YBa2Cu3O7-x superconducting films from molecular Cu-Ba-Y precursors. J. Appl. Phys. Lett. 60, 1384 (1992).CrossRefGoogle Scholar
17.Paranthaman, M., Beach, D.B.: Growth of highly oriented TlBa2Ca2Cu3O9-y superconducting films on Ag substrates using a dip-coated barium calcium copper oxide sol-gel precursor. J. Am. Ceram. Soc. 78, 2551 (1995).Google Scholar
18.Lange, F.F.: Chemical solution routes to single-crystal thin films. Science 273, 903 (1996).Google Scholar
19.Schneller, T., Waser, R.: Chemical solution deposition of ferroelectric thin films—state of the art and recent trends. Ferroelectrics 267, 293 (2002).Google Scholar
20.Brinker, C.J., Hurd, A.J., Frye, G.C., Ward, K.J., Ashley, C.S.: Sol-gel thin film formation. J. Non-Cryst. Solids 121, 294 (1990).CrossRefGoogle Scholar
21.Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).CrossRefGoogle Scholar
22.Schwartz, R.W., Schneller, T., Waser, R.: Chemical solution deposition of electronic oxide films. C.R. Chimie 7, 433 (2004).CrossRefGoogle Scholar
23.Paranthaman, M., Bhuiyan, M.S., Sathyamurthy, S., Zhai, H.Y., Goyal, A., Salama, K.: Epitaxial growth of solution based rare earth niobate, RE3NbO7 films on biaxially textured Ni-W substrates. J. Mater. Res. 20, 6 (2005).CrossRefGoogle Scholar
24.Paranthaman, M., Chirayil, T.G., List, F., Cui, X., Goyal, A., Lee, D.F., Specht, E.D., Martin, P.M., Williams, R.K., Kroeger, D.M., Morrel, J.S., Beach, D.B., Feenstra, R., Christen, D.K.: Fabrication of long lengths of epitaxial buffer layers on biaxially textured nickel substrates using a continuous reel-to-reel dip-coating unit. J. Am. Ceram. Soc. 84, 273 (2001).Google Scholar
25.Aytug, T., Paranthaman, M., Kang, B.W., Beach, D.B., Sathyamurthy, S., Specht, E.D., Lee, D.F., Feenstra, R., Goyal, A., Kroeger, D.M., Leonard, K.J., Martin, P.M., Christen, D.K.: Reel-to-reel continuous chemical solution deposition of epitaxial Gd2O3 buffer layers on biaxially textured metal tapes for the fabrication of YBa2Cu3O7-6 coated conductors. J Am. Ceram. Soc. 86, 257 (2003).CrossRefGoogle Scholar
26.Bhuiyan, M.S., Paranthaman, M., Sathyamurthy, S., Aytug, T., Kang, S., Lee, D.F., Goyal, A., Payzant, E.A., Salama, K.: MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni–W substrates for YBCO coated conductors. Supercond. Sci. Technol. 16, 1305 (2003).Google Scholar
27.Bhuiyan, M.S., Paranthaman, M., Kang, S., Lee, D.F., Salama, K.: Growth of epitaxial Y2O3 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors by MOD approach. Physica C 422, 95 (2005).CrossRefGoogle Scholar
28.Sathyamurthy, S., Paranthaman, M., Aytug, T., Kang, B.W., Martin, P.M., Goyal, A., Kroeger, D.M., Christen, D.K.: Chemical solution deposition of lanthanum zirconate buffer layers on biaxially textured Ni-1.7%Fe-3%W alloy substrates for coated-conductor fabrication. J. Mater. Res. 17, 1543 (2002).Google Scholar
29.Bhuiyan, M.S., Paranthaman, M., Sathyamurthy, S., Goyal, A., Salama, K.: Growth of rare earth niobate based pyrochlores on textured Ni-W substrates with ionic radii dependency. J. Mater. Res. 20, 904 (2005).Google Scholar
30.Dawley, J.T., Ong, R.J., Clem, P.G.: Chemical solution deposition of (100)-oriented SrTiO3 buffer layers on Ni substrates. J. Mater. Res. 17, 1678 (2002).Google Scholar
31.Gmelin, L.: Gmelin Handbook of Inorganic Chemistry, 8th ed. (Springer-Verlag, Berlin, 1984), p. 34.Google Scholar