Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T19:20:24.039Z Has data issue: false hasContentIssue false

Deposition of silicon carbide using the chemical vapor composites process: Process characterization and comparison with RASSPVDN model predictions

Published online by Cambridge University Press:  31 January 2011

M.D. Allendorf
Affiliation:
Sandia National Laboratories, Livermore, California 94551-0969
R.H. Hurt
Affiliation:
Sandia National Laboratories, Livermore, California 94551-0969
N. Yang
Affiliation:
Sandia National Laboratories, Livermore, California 94551-0969
P. Reagan
Affiliation:
ThermoTrex Corporation, 85 First Avenue, P.O. Box 9046, Waltham, Massachusetts 02254-9046
M. Robbins
Affiliation:
ThermoTrex Corporation, 85 First Avenue, P.O. Box 9046, Waltham, Massachusetts 02254-9046
Get access

Abstract

In this work, we explore the use of the chemical vapor composites (CVC) process to increase the rates of silicon carbide (SiC) growth on graphite substrates. Large SiC seed particles are used that are deposited by gravity-driven sedimentation. The results show that addition of large (dp = 28 μm) SiC seed particles to a gas phase containing hydrogen and methyltrichlorosilane increases the deposition rate of SiC by amounts substantially higher than that expected from the addition of the particle volume alone. Insight into the mechanism of this deposition rate enhancement is obtained through analysis of SEM photographs of deposits. Growth rates and deposit structures are consistent with the trends predicted by the previously developed random-sphere model of simultaneous particle-vapor deposition (RASSPVDN), which is used here to interpret the data.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Proc. 11th Int. Conf. Chem. Vapor Deposition (The Electrochemical Society, Pennington, 1990).Google Scholar
2Besmann, T. M.Stinton, D.P. and Lowden, R.A.Mater. Res. Bull. XIII, 45 (1988).Google Scholar
3Caputo, A. J. and Lackey, W. J.Ceram. Eng. Sci. Proc. 5, 654 (1984).Google Scholar
4Shimogaki, Y. and Komiyama, H.Chem. Lett. 267 (1986).Google Scholar
5Komiyama, H. and Osawa, T.Jpn. J. Appl. Phys. 24, L795 (1985).Google Scholar
6Komiyama, H.Osawa, T.Kazi, H. and Konno, T.Mater. Sci. Monographs 38A, 667 (1986).Google Scholar
7Komiyama, H.Osawa, T.Shimogaki, Y.Wakita, N. and Ueoka, T., in Proc. 10th Int. Conf. Chem. Vapor Deposition (The Electrochemical Society, Pennington, 1987), p. 1119.Google Scholar
8Scoville, A. N. and Reagan, P. unpublished results.Google Scholar
9Hurt, R.H. and Allendorf, M.D.AIChe J. 37, 1485 (1991).Google Scholar
10So, M. G. and Chun, J. S.J. Vac. Sci. Technol. A6, 5 (1988).Google Scholar
11Fischman, G.S. and Petuskey, W.T.J. Am. Ceram. Soc. 68, 185 (1985).Google Scholar
12Leva, in Fluidization (McGraw-Hill, New York, 1959), p. 54.Google Scholar
13Friedlander, S. K.Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (John Wiley & Sons, New York, 1977).Google Scholar
14Brennfleck, K.E.Fitzer, K.E.Schoch, G. and Dietrich, M. in Proc. 9th Int. Conf. Chem. Vapor Deposition (The Electrochemical Society, Pennington, 1984),p. 649.Google Scholar
15Muench, W.V. and Pettenpaul, E.J. Electrochem. Soc. 125, 294299 (1978).Google Scholar
16Kemenade, A.W.C. and Stemfoort, C.F.J. Cryst. Growth 12, 1316 (1972).CrossRefGoogle Scholar
17Krug, J. and Meakin, P.Phys. Rev. A40, 2064 (1989).Google Scholar
18Meakin, P.Phys. Rev. A38, 994 (1988).Google Scholar
19Henderson, D.Brodsky, M. H. and Chaudhari, P.Appl. Phys. Lett. 25, 641 (1974).CrossRefGoogle Scholar