Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T16:00:08.315Z Has data issue: false hasContentIssue false

Determination of domain structure and abundance of epitaxial Pb(Zr, Ti)O3 thin films grown on MgO(001) by rf magnetron sputtering

Published online by Cambridge University Press:  26 July 2012

Kyeong Seok Lee
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
Young Min Kang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
Sunggi Baik
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
Get access

Extract

Epitaxial Pb(ZrxTi1−x)O3 (x = 0.0−0.32) ferroelectric thin films of 500 nm thickness were grown on MgO(001) single crystal substrates by in situ rf magnetron sputtering, and evolution of their domain structures is characterized by employing various x-ray diffraction techniques. X-ray θ-2θ scan showed the films were grown highly c-axis oriented with a tetragonal perovskite structure. 90° domain configuration was investigated using the x-ray rocking curve analysis for PZT 100 peaks in two different Φphi; angles. The rocking curve analysis showed that the degree of c-axis orientation and the crystalline quality of the films were improved continuously with increasing Zr concentration. The c-domain abundance as a function of Zr concentration was quantified using the x-ray rocking curves of PZT 001 and 100, taking account of structural factors and Lorentz-polarization factors. High temperature x-ray technique was also employed to quantify the domain structure as a function of temperature during cooling after reheating the samples to 650 °C. During the cooling process, c-domain abundance was found to increase continuously while the crystalline quality of the films was deteriorated below the Curie temperature. The results led us to conclude that the transformation strain of the film at and below the Curie temperature plays a significant role in the final domain structure and abundance of epitaxial PZT thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Okuyama, M. and Hamakawa, Y., Int. J. Engng. Sci. 29, 391 (1991).CrossRefGoogle Scholar
2.Adachi, H. and Wasa, K., IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38, 645 (1991).CrossRefGoogle Scholar
3.Tuttle, B.A., Voigt, J. A., Goodnow, D. C., Lamppa, D.L., Headley, T. J., Eatough, M.O., Zender, G., Nasby, R.D., and Rodgers, S.M., J. Am. Ceram. Soc. 76, 1537 (1993).CrossRefGoogle Scholar
4.Ramesh, R., Sands, T., Keramidas, V.G., and Fork, D.K., Mater. Sci. Eng. B22, 283 (1994).CrossRefGoogle Scholar
5.Dimos, D., Annu. Rev. Mater. Sci. 251, 273 (1995).CrossRefGoogle Scholar
6.Nashimoto, K., Fork, D.K., Ponce, F.A., and Tramontana, J. C., Jpn. J. Appl. Phys. 32, 4099 (1993).CrossRefGoogle Scholar
7.Stemmer, S., Streiffer, S. K., Hsu, W. Y., Ernst, F., Raj, R., and Rühle, M., J. Mater. Res. 10, 791 (1995).CrossRefGoogle Scholar
8.de Keijser, M., Cillessen, J.F. M., Janssen, R. B. F., de Veirman, A. E. M., and de Leeuw, D. M., J. Appl. Phys. 79, 393 (1996).CrossRefGoogle Scholar
9.Kwak, B.S., Erbil, A., Budai, J.D., Chisholm, M.F., Boatner, L.A., and Wilkens, B. J., Phys. Rev. Lett. 68, 3733 (1992);CrossRefGoogle Scholar
Kwak, B.S., Erbil, A., Budai, J. D., Chisholm, M.F., Boatner, L.A., and Wilkens, B. J., Phys. Rev. B 49, 14865 (1994).CrossRefGoogle Scholar
10.Pompe, W., Gong, X., Suo, Z., and Speck, J. S., J. Appl. Phys. 74, 6012 (1993).CrossRefGoogle Scholar
11.Speck, J. S. and Pompe, W., J. Appl. Phys. 76, 466 (1994);CrossRefGoogle Scholar
Speck, J. S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys. 76, 477 (1994).CrossRefGoogle Scholar
12.Kang, Y. M., Ku, J. K., and Baik, S., J. Appl. Phys. 78, 2601 (1995).CrossRefGoogle Scholar
13.Xu, Y., Ferroelectric Materials and Their Applications (Elsevier Science Publishers, B. V., Amsterdam, 1991).Google Scholar
14.Kim, S., Kang, Y., and Baik, S., Ferroelectrics 152, 349 (1994).CrossRefGoogle Scholar
15.Stemmer, S., Streiffer, S. K., Ernst, F., and Rühle, M., Philos. Mag. A 71, 713 (1995).CrossRefGoogle Scholar
16.Speck, J. S., Daykin, A. C., Seifert, A., Romanov, A. E., and Pompe, W., J. Appl. Phys. 78, 1696 (1995).CrossRefGoogle Scholar
17.Foster, C. M., Pompe, W., Daykin, A. C., and Speck, J. S., J. Appl. Phys. 79, 1405 (1996).CrossRefGoogle Scholar
18.Foster, C. M., Li, Z., Buckett, M., You, H., and Merkle, K.L., J. Appl. Phys. 78, 2607 (1995).CrossRefGoogle Scholar
19.Iijima, K., Takeuchi, T., Nagao, N., Takayama, R., and Ueda, I., in Proceedings of the 9th IEEE International Symposium on Applications of Ferroelectrics, edited by Randey, R. K., Liu, M., and Safari, A. (Pennsylvania, Aug. 1994), p. 53.Google Scholar
20.Schwartz, L.H. and Cohen, J. B., Diffraction from Materials (Springer-Verlag, Berlin, 1987), 2nd ed., p. 224.CrossRefGoogle Scholar
21.Shirane, G., Pepinsky, R., and Fraser, B. C., Acta Crystallogr. 9, 131 (1956).CrossRefGoogle Scholar
22.Ogawa, T., Senda, A., and Kasanami, T., Jpn. J. Appl. Phys. 30, 2145 (1991).CrossRefGoogle Scholar
23.Takesue, N. and Chen, H., J. Appl. Phys. 76, 5856 (1994).CrossRefGoogle Scholar
24.Kim, S., Kang, Y. M., and Baik, S., J. Am. Ceram. Soc. 79, 1105 (1996).CrossRefGoogle Scholar