Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T11:05:51.415Z Has data issue: false hasContentIssue false

Determination of mechanical properties by nanoindentation independently of indentation depth measurement

Published online by Cambridge University Press:  24 August 2012

Gaylord Guillonneau*
Affiliation:
Ecole Centrale de Lyon, Université de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS/ECL/ENISE, 69134 Ecully, France
Guillaume Kermouche
Affiliation:
Ecole Nationale d’Ingénieurs de Saint-Etienne, Université de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS/ECL/ENISE, 42000 Saint-Etienne, France
Sandrine Bec
Affiliation:
Ecole Centrale de Lyon, Université de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS/ECL/ENISE, 69134 Ecully, France
Jean-Luc Loubet
Affiliation:
Ecole Centrale de Lyon, Université de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS/ECL/ENISE, 69134 Ecully, France
*
a)Address all correspondence to this author. e-mail: gaylord.guillonneau@ec-lyon.fr
Get access

Abstract

A new technique based on the detection of the amplitude of the second harmonic was described in a previous paper. To compute the elastic modulus and the hardness of materials, the technique uses only the derivative of the contact radius with respect to the indentation depth. For this reason, this method is applicable only to homogeneous materials. In this paper, the method is extended to any materials with constant Young modulus. The indentation depth value is not needed at all, thus eliminating uncertainties related to the displacement measurement, which are very influent at small penetration depths. Furthermore, we also explain how to compute the indentation depth from the detection of the amplitude of the second harmonic. This new measurement technique was tested on three samples: fused silica, Poly(methyl methacrylate) (PMMA), and calcite, which is expected to exhibit indentation size effect. The obtained results show that mechanical properties and the indentation depth can be determined with good accuracy for penetration depths between 25 and 100 nm using this method.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, UK, 2000).CrossRefGoogle Scholar
Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1, 145179 (1970).CrossRefGoogle Scholar
Bulychev, S.I., Alekhin, V.P., Shorshorov, M.K., Ternovskii, A.P., and Shnyrev, G.D.: Determining Young modulus from the indenter penetration diagram. Ind. Lab. 41, 14091412 (1975). (English translation of Zavodskaya Laboratoriya).Google Scholar
Loubet, J.L., Bauer, M., Tonck, A., Bec, S., and Gauthier-Manuel, B.: Nano-indentation with a surface force apparatus. In Mechanical Properties and Deformation of Materials Having Ultra-Fine Microstructure. (NATO ASI Series - Series E : Applied Sciences, vol. 233, Dordrecht, Netherlands, 1993); pp. 7289.Google Scholar
Loubet, J.L., Georges, J.M., and Meille, G.: Vickers Indentation Curves of Elastoplastic Materials. Microindentation Techniques in Materials Science and Engineering (American Society for Testing and Materials, Philadelphia, PA, 1986); pp. 7289.Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
Pharr, G.M. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 26602671 (2002).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 320 (2004).CrossRefGoogle Scholar
Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601609 (1986).CrossRefGoogle Scholar
Pethica, J.B., Hutchings, R., and Oliver, W.C.: Hardness measurement at penetration depths as small as 20-nm. Philos. Mag. A 48, 593606 (1983).CrossRefGoogle Scholar
Asif, S.A.S., Wahl, K.J., and Colton, R.J.: Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 24082413 (1999).CrossRefGoogle Scholar
Guillonneau, G., Kermouche, G., Bec, S., and Loubet, J-L.: Extraction of mechanical properties with second harmonic detection for dynamic nanoindentation testing. Exp. Mech. 52, 933944 (2012).CrossRefGoogle Scholar
Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 4757 (1965).CrossRefGoogle Scholar
Lucas, B.N., Oliver, W.C., Pharr, G.M., and Loubet, J-L.: Time dependent deformation during indentation testing, in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997); p. 233.Google Scholar
Fischer-Cripps, A.C.: Nanoindentation (Springer-Verlag New York Inc., New York, NY, 2002).CrossRefGoogle Scholar
King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 16571664 (1987).CrossRefGoogle Scholar
Bec, S., Tonck, A., Georges, J-M., Georges, E., and Loubet, J.-L.: Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74, 1061 (1996).CrossRefGoogle Scholar
Hochstetter, G., Jimenez, A., and Loubet, J.L.: Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J. Macromol. Sci. Part B Phys. 38, 681 (1999).CrossRefGoogle Scholar
Pharr, G.M., Oliver, W.C., and Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613617 (1992).CrossRefGoogle Scholar
Zügner, S., Marquardt, K., and Zimmermann, I.: Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills. Eur. J. Pharm. Biopharm. 62, 194201 (2006).CrossRefGoogle ScholarPubMed
Pharr, G.M., Strader, J.H., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653666 (2009).CrossRefGoogle Scholar
Broz, M., Cook, R., and Whitney, D.: Microhardness, toughness, and modulus of Mohs scale minerals. Am. Mineral. 91, 135142 (2006).CrossRefGoogle Scholar
Whitney, D.L., Broz, M., and Cook, R.F.: Hardness, toughness, and modulus of some common metamorphic minerals. Am. Mineral. 92, 281288 (2007).CrossRefGoogle Scholar
Schuh, C.A., Packard, C.E., and Lund, A.C.: Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 3, 725736 (2006).CrossRefGoogle Scholar