Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:42:39.063Z Has data issue: false hasContentIssue false

Determination of the dependence of the surface force induced contact radius on particle radius: Cross-linked polystyrene spheres on SiO2/silicon

Published online by Cambridge University Press:  31 January 2011

D.S. Rimai
Affiliation:
Eastman Kodak Company, Office Imaging, Rochester, New York 14650-2107
R.S. Moore
Affiliation:
Eastman Kodak Company, Materials Science and Engineering, Rochester, New York 14650-2104
R.C. Bowen
Affiliation:
Eastman Kodak Company, Analytical Technology Division, Rochester, New York 14650
V.K. Smith
Affiliation:
Eastman Kodak Company, Analytical Technology Division, Rochester, New York 14650
P.E. Woodgate
Affiliation:
Eastman Kodak Company, Polymer Products, Rochester, New York 14650
Get access

Abstract

The contact radii arising from surface forces were determined for cross-linked polystyrene particles having radii between 1.5 and 10 μm in contact with SiO2/silicon substrates using scanning electron microscopy. It was observed that the contact radius varied approximately as the particle radius to the 0.42 ± 0.13 power. These results are consistent with the theories that assume plastic response of the materials, such as that proposed by Maugis and Pollock [D. Maugis and H. M. Pollock, Acta Metall. 32, 1323 (1984)] but are inconsistent with the predictions of models which assume only elastic response, such as that of Johnson, Kendall, and Roberts [K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Soc. London A 324, 301 (1971)]. The thermodynamic work of adhesion, calculated from the experimental results, was found to be 0.32 J/m2, which is significantly smaller than that reported previously on a similar system.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Derjaguin, B.V.Kolloid Z. 69, 155 (1934).Google Scholar
2Bradley, R.S.Philos. Mag. 13, 853 (1932).CrossRefGoogle Scholar
3Bradley, R. S.Trans. Faraday Society 32, 1088 (1936).CrossRefGoogle Scholar
4Johnson, K. L.Kendall, K. and Roberts, A.D.Proc. R. Soc. London Sect. A324, 301 (1971).Google Scholar
5Derjaguin, B.V.Muller, V.M. and Toporov, Yu. P.J. Colloid Interface Sci. 53, 314 (1975).CrossRefGoogle Scholar
6Tabor, D.J. Colloid Interface Sci. 58, 2 (1977).CrossRefGoogle Scholar
7Tabor, D.J. Colloid Interface Sci. 67, 380 (1978).CrossRefGoogle Scholar
8Derjaguin, B. V.Muller, V. M. and Toporov, Yu. P.J. Colloid Interface Sci. 67, 378 (1978).Google Scholar
9Muller, V. M.Yushchenko, V. S. and Derjaguin, B. V.J. Colloid Interface Sci. 77, 91 (1980).CrossRefGoogle Scholar
10Tsai, C.J.Pui, D.Y.H. and Liu, B.Y.H.Aerosol Sci. Technol. 15, 239 (1991).Google Scholar
11Krupp, H.Adv. Colloid Interface Sci. 1, 111 (1967).Google Scholar
12Maugis, D. and Pollock, H. M.Acta Metall. 32, 1323 (1984).CrossRefGoogle Scholar
13Pashley, M.D. and Tabor, D.Vacuum 31, 619 (1981).CrossRefGoogle Scholar
14Chaudhri, M. M. and Yoffe, E. H.Philos. Mag. A44, 667 (1981).Google Scholar
15DeMejo, L.P.Rimai, D.S. and Bowen, R.C.J. Adhesion Sci. Technol. 2, 331 (1988).CrossRefGoogle Scholar
16Rimai, D. S.DeMejo, L. P. and Bowen, R. C.J. Appl. Phys. 65, 755 (1989).CrossRefGoogle Scholar
17DeMejo, L.P.Rimai, D.S. and Bowen, R.C. in Particles on Surfaces 2: Detection, Adhesion, and Removal, edited by Mittal, K. L. (Plenum, New York, 1989).Google Scholar
18Bowen, R.C.Rimai, D.S. and DeMejo, L.P.J. Adhesion Sci. Technol. 3, 623 (1989).CrossRefGoogle Scholar
19Rimai, D. S.DeMejo, L. P. and Bowen, R. C.J. Appl. Phys. 66, 3574 (1989).CrossRefGoogle Scholar
20Rimai, D. S.DeMejo, L. P. and Bowen, R. C.J. Appl. Phys. 68, 6234 (1990).CrossRefGoogle Scholar
21DeMejo, L.P.Rimai, D.S. and Bowen, R.C.J. Adhesion Sci. Technol. 5, 959 (1991).CrossRefGoogle Scholar
22Bowen, R.C.DeMejo, L.P.Rimai, D.S. and Vreeland, W.B.J. Appl. Phys. 70, 3360 (1991).CrossRefGoogle Scholar
23Rimai, D. S.DeMejo, L. P.Vreeland, W.Bowen, R.Gaboury, S. R. and Urban, M. W.J. Appl. Phys. 71, 2253 (1992).CrossRefGoogle Scholar
24Rimai, D.S.DeMejo, L.P.Vreeland, W.B.Bowen, R.C.Gaboury, S.R., and Urban, M. W.J. Appl. Phys. (in press).Google Scholar
25DeMejo, L. P.Rimai, D. S.Chen, J. and Bowen, R. C.J. Adhesion 39, 61 (1992).CrossRefGoogle Scholar
26Morris, J.D. and Rimai, D.S. unpublished results.Google Scholar
27Morehouse, D. S. Jr. and Tetreault, R. J. U. S. Patent #3 615 972 (1971).Google Scholar
28Krevelen, D. W. van, Properties of Polymers (Elsevier, New York, 1976).Google Scholar
29Rogers, L. N. and Reed, J.J. Phys. D 17, 677 (1984).Google Scholar
30Wall, S.John, W. and Goren, S. L. in Particles on Surfaces 2: Detection, Adhesion, and Removal, edited by Mittal, K. L. (Plenum, New York, 1989), pp. 1934.CrossRefGoogle Scholar
31Rimai, D.S.Bowen, R.C.Moore, R.S. and Woodgate, P.E. unpublished results.Google Scholar
32Rimai, D. S. unpublished results.Google Scholar
33Handbook of Chemistry and Physics, 68th ed., edited by Weast, R. C. (CRC, Boca Raton, FL, 1987), p. F27.Google Scholar
34Tabor, D.J. Colloid Interface Sci. 58, 2 (1977).CrossRefGoogle Scholar
35Bowling, R. Allen, in Particles on Surfaces 1: Detection, Adhesion, and Removal, edited by Mittal, K. L. (Plenum, New York, 1988), pp. 129142.CrossRefGoogle Scholar