Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T05:15:39.062Z Has data issue: false hasContentIssue false

Development of a metal-organic deposition process for growth of lanthanum manganate buffer layers for coated conductors

Published online by Cambridge University Press:  31 January 2011

Kartik Venkataraman
Affiliation:
Materials Science Program and Applied Superconductivity Center, University of Wisconsin−Madison, Madison, Wisconsin 53706
Eric Hellstrom*
Affiliation:
Materials Science Program and Applied Superconductivity Center, University of Wisconsin−Madison, Madison, Wisconsin 53706
*
b) Address all correspondence to this author. Present address: Applied Superconductivity Center, National High Magnetic Field Laboratory and Department of Mechanical Engineering, FAMU-FSU, 2031 East Paul Dirac Drive, Tallahassee, FL 32310. e-mail: hellstrom@asc.magnet.fsu.edu
Get access

Abstract

One embodiment of YBa2Cu3O7-x (YBCO)-coated conductors consists of YBCO film grown using a metal-organic deposition (MOD) process on a buffer layer stack deposited on a Ni-W substrate. A possible alternative is to replace the multilayer buffer stack with a single layer of LaMnO3 (LMO) grown by MOD. A suitable temperature (T) – oxygen partial pressure (PO2) process-window to grow LMO films via MOD on Ni substrates has been identified. Untextured LMO was grown on pure Ni. However, we have not been able to grow phase-pure LMO films on either bare or Y2O3-coated, biaxially textured Ni-5W (at.%) due to the incongruent, overlapping requirements of having the PO2 low enough to not oxidize the Ni-5W substrate but high enough to convert the metal-organic precursors to LMO and the relatively high temperatures needed to form an epitaxial film in an MOD process. The main problem is that tungsten from the substrate reacts with cations in the overlying film forming tungstates when the films are processed in the T-PO2 window.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., and Haas, M.: Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature 410, 186 (2001).CrossRefGoogle ScholarPubMed
2Iijima, Y. and Matsumoto, K.: High-temperature-superconductor coated conductors: Technical progress in Japan. Supercond. Sci. Technol. 13, 68 (2000).CrossRefGoogle Scholar
3Finnemore, D.K., Gray, K.E., Maley, M.P., Welch, D.O., Christen, D.K., and Kroeger, D.M.: Coated conductor development: An assessment. Physica C 320, 1 (1999).CrossRefGoogle Scholar
4Malozemoff, A.P., Fleshler, S., Rupich, M., Thieme, C., Li, X., Zhang, W., Otto, A., Maguire, J., Folts, D., Yuan, J., Kraemer, H.P., Schmidt, W., Wohlfart, M., and Neumueller, H.W.: Progress in high temperature superconductor coated conductors and their applications. Supercond. Sci. Technol. 21, 034005 (2008).CrossRefGoogle Scholar
5Schoop, U., Rupich, M.W., Thieme, C., Verebelyi, D.T., Zhang, W., Li, X., Kodenkandath, T., Nguyen, N., Siegal, E., Civale, L., Holesinger, T., Maiorov, B., Goyal, A., and Paranthaman, M.: Second generation HTS wire based on RABiTS substrates and MOD YBCO. IEEE Trans. Appl. Supercond. 15, 2611 (2005).CrossRefGoogle Scholar
6Chirayil, T.G., Paranthaman, M., Beach, D.B., Lee, D.F., Goyal, A., Williams, R.K., Cui, X., Kroeger, D.M., Feenstra, R., Verebelyi, D.T., and Christen, D.K.: Epitaxial growth of La2Zr2O7 thin films on rolled Ni-substrates by sol-gel process for high Tc superconducting tapes. Physica C 336, 63 (2000).CrossRefGoogle Scholar
7Sathyamurthy, S., Paranthaman, M., Bhuiyan, M.S., Payzant, E.A., Lee, D.F., Goyal, A., Li, X., Kodenkandath, T., Schoop, U., and Rupich, M.: Solution deposition approach to high Jc coated conductor fabrication. IEEE Trans. Appl. Supercond. 15, 2974 (2005).CrossRefGoogle Scholar
8Aytug, T., Paranthaman, M., Zhai, H.Y., Christen, H.M., Sathyamurthy, S., Christen, D.K., and Ericson, R.E.: Single buffer layers of LaMnO3 or La0.7Sr0.3MnO3 for the development of YBa2Cu3O7-d-coated conductors: A comparative study. J. Mater. Res. 17, 2193 (2002).CrossRefGoogle Scholar
9Gorbenko, O., Stadel, O., Wahl, G., and Kaul, A.: MOCVD of LaMnO3 on biaxially textured Ni-based substrates in a reducing atmosphere. Chem. Vap. Deposition 10, 109 (2004).CrossRefGoogle Scholar
10Jung, D.Y. and Payne, D.A.: Patterning of rare-earth manganate thin layer using self-assembled organic thin-film templates. Bull. Korean Chem. Soc. 20, 824 (1999).Google Scholar
11Hwang, H.J., Towata, A., and Awano, M.: Fabrication of lanthanum manganese oxide thin films on yttria-stabilized zirconia substrates by a chemically modified alkoxide method. J. Am. Ceram. Soc. 84, 2323 (2001).CrossRefGoogle Scholar
12Polli, A.D., Lange, F.F., Ahlskog, M., Menon, R., and Cheetham, A.K.: Processing magnetoresistive thin films via chemical solution deposition. J. Mater. Res. 14, 1337 (1999).CrossRefGoogle Scholar
13Shimizu, Y. and Murata, T.: Sol-gel synthesis of perovskite-type lanthanum manganite thin films and fine powders using metal acetylacetonate and poly(vinyl alcohol). J. Am. Ceram. Soc. 80, 2702 (1997).CrossRefGoogle Scholar
14Venkataraman, K., Hellstrom, E.E., and Paranthaman, M.: Growth of lanthanum manganate buffer layers for coated conductors via a metal-organic decomposition process. IEEE Trans. Appl. Super-cond. 15, 3005 (2005).CrossRefGoogle Scholar
15Venkatraman, K.: Growth of lanthanum manganate buffer layers for coated conductors via a metal-organic decomposition process. University of Wisconsin-Madison, Madison, 2007.Google Scholar
16Venkataraman, K., Hellstrom, E., and Paranthaman, M.: Erratum: Growth of lanthanum manganate buffer layers for coated conductors via a metal-organic decomposition process. IEEE Trans. Appl. Supercond. (2008, accepted).CrossRefGoogle Scholar
17Leonard, K.J., Goyal, A., Kang, S., Yarborough, K.A., and Kroeger, D.M.: Identification of a self-limiting reaction layer in 1574 Ni-3 at.% W rolling-assisted biaxially textured substrates. Super-cond. Sci. Technol. 17, 1295 (2004).CrossRefGoogle Scholar
18Kitayama, K.: Phase equilibrium in the system Ln-Mn-O. J. Solid State Chem. 153, 336 (2000).CrossRefGoogle Scholar
19Nakamura, T., Petzow, G., and Gauckler, L.J.: Stability of the perovskite phase LaBO3 (B=V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. I. Experimental results. Mater. Res. Bull. 14, 649 (1979).CrossRefGoogle Scholar
20Vorobev, Y.P., Novlev, A.A., Leont'ev, S.A., Men, A.N., Prokudina, S.A., and Rubinchik, Y.S.: Thermodynamic properties of LaMnO3. Inorg. Mater. 15, 1142 (1979).Google Scholar
21Rezukhina, T.N., Gerasimov, Y.I., and Morozova, V.A.: Thermodynamics of rare metals. II. Equilibrium between manganese tungstate and hydrogen. Zhurnal Fizicheskoi Khimii. 25, 93 (1951).Google Scholar
22Aune, R.E., Sridhar, S., and Sichen, D.: A galvanic-cell study of (nickel + tungsten + oxygen) in the temperature range 1034K to 1317K. J. Chem. Thermodyn. 26, 493 (1994).CrossRefGoogle Scholar
23Robie, R.A., Hemingway, B.S., and Fisher, J.R.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S., Geological Survey Bulletin 1452 (U.S., Government Printing Office, Washington, DC, 1979).Google Scholar
24Bhuiyan, M.S., Paranthaman, M., and Salama, K.: Solution-derived textured oxide thin films—A review. Supercond. Sci. Technol. 19, 1 (2006).CrossRefGoogle Scholar
25Naray-Szabo, I.: The structure of compounds ABO3: “Sister structures.” Naturwissenschaften 31, 466 (1943).Google Scholar
26Sathyamurthy, S. and Salama, K.: Chemical solution deposition of highly oriented strontium titanate buffer layers for coated conductors. Supercond. Sci. Technol. 13, 1 (2000).CrossRefGoogle Scholar
27Cantoni, C., Christen, D.K., Goyal, A., Heatherly, L., Ownby, G.W., Zehner, D.M., Norton, D.P., Rouleau, C.M., and Christen, H.M.: Effect of sulfur surface structure on nucleation of oxide seed layers on textured metals for coated conductor applications, in Materials for High-Temperature Superconductor Technologies, edited by Paranthaman, M.P., Rupich, M.W., Salama, K., Mannhart, J., and Hasegawa, T. (Mater. Res. Soc. Symp Proc. 689, Warrendale, PA, 2002), pp. 349354.Google Scholar
28Sathyamurthy, S., Paranthaman, M., Zhai, H.Y., Christen, H.M., Martin, P.M., and Goyal, A.: Lanthanum zirconate: A single buffer layer processed by solution deposition for coated conductor fabrication. J. Mater. Res. 17, 2181 (2002).CrossRefGoogle Scholar
29Daoudi, K., Tsuchiya, T., Yamaguchi, I., Manabe, T., Mizuta, S., and Kumagai, T.: Epitaxial growth of La0.7Ca0.3MnO3 thin films by KrF excimer laser assisted metal organic deposition process. Appl. Surf. Sci. 247, 89 (2005).CrossRefGoogle Scholar
30Daoudi, K., Tsuchiya, T., Mizuta, S., Yamaguchi, I., Manabe, T., and Kumagai, T.: Electrical properties of La0:7Ca0:3MnO3 thin films obtained by metal-organic deposition (MOD) using excimer laser and thermal annealing. Jpn. J. Appl. Phys. 44, 5129 (2005).CrossRefGoogle Scholar