Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T02:21:13.488Z Has data issue: false hasContentIssue false

Development of flat, smooth (100) faceted diamond thin films using microwave plasma chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Andrew L. Yee
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 North Campus Drive, Evanston, Illinois 60208
H. C. Ong
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 North Campus Drive, Evanston, Illinois 60208
L. M. Stewart
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 North Campus Drive, Evanston, Illinois 60208
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 North Campus Drive, Evanston, Illinois 60208
Get access

Abstract

A novel approach has been used to develop (100) faceted diamond films with flat, smooth surfaces. A morphological study of the early stages of growth behavior of (100) homoepitaxial films versus process temperature and methane percentage was carried out using atomic force microscopy. The results showed that spiral growth features and penetration twin density were dominant for growth conditions not well suited for (100) growth. Optimized process parameters were found to proceed via a step mechanism consistent with ledge growth on (2 × 1) reconstructed (100) diamond surfaces. These optimized conditions were then applied to growth of polycrystalline diamond on pretreated silicon substrates. A unique octahedral faceted film resulted, indicating strong preference for growth in the 〈100〉 direction. Scanning electron microscopy, x-ray diffraction, and Raman spectroscopy were used to assess film morphology, internal fiber texture, and carbon phase, respectively. A second stage growth step was used to flatten the surface topography to achieve the desired (100) flat tile-like morphology. This smooth (100) surface exhibited enhanced tribological performance compared to a typical randomly textured diamond film.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Spitsyn, B. V., Bouilov, L. L., and Deryagin, B. V., J. Cryst. Growth 52, 219 (1981).CrossRefGoogle Scholar
2.Kobashi, K., Nishimura, K., Kawate, Y., and Horuchi, T., Phys. Rev. B 38, 4067 (1988).Google Scholar
3.Wild, C., Herres, N., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., and Brenn, R., Diamond Rel. Mater. 2, 158 (1993).CrossRefGoogle Scholar
4.Wild, C., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990).CrossRefGoogle Scholar
5.Lee, N. and Badzian, A., Appl. Phys. Lett. 67, 2011 (1995).CrossRefGoogle Scholar
6.Zhu, W., Messier, R., and Badzian, A. R., in Proceedings of the First International Symposium on Diamond and Diamond-Like Films, edited by Dismukes, J. P. (The Electrochemical Society, Los Angeles, 1989), p. 61.Google Scholar
7.Vazquez, L., Sanchez, O., and Albella, J. M., J. Vac. Sci. Technol. B 12, 1 (1994).CrossRefGoogle Scholar
8.Turner, K. F., Stoner, B. R., Bergman, L., Glass, J. T., and Nemanich, F. J., J. Appl. Phys. 69, 6400 (1991).Google Scholar
9.Sutcu, L. F., Chu, C. J., Thompson, M. S., Hauge, R. H., and Margrave, J. L., J. Appl. Phys. 71, 5930 (1992).CrossRefGoogle Scholar
10.Zimmerman-Edling, W., Busmann, H-G., Sprang, H., and Hertel, I. V., Ultramicroscopy 42–44, 1366 (1992).Google Scholar
11.Chernoff, D. A. and Windischmann, H., J. Vac. Sci. Technol. A 10, 2126 (1992).Google Scholar
12.Busmann, H. G., Sprang, H., Hertel, I. V., Zimmermann, W., and Güntherodt, H. J., Appl. Phys. Lett. 59, 295 (1991).Google Scholar
13.Turner, K. F., LeGrice, Y. M., Stoner, B. R., Glass, J. T., and Nemanich, R. J., J. Vac. Sci. Technol. B 9, 914 (1991).CrossRefGoogle Scholar
14.Baranauskas, V., Fukui, M., Rodrigues, C. R., Parizotto, N., and Trava-Airoidi, V. J., Appl. Phys. Lett. 60, 1567 (1992).Google Scholar
15.Meilunas, R., Wong, M. S., Ong, T. P., and Chang, R. P. H., in Laser and Particle-Beam Modification of Chemical Processes on Surfaces, edited by Johnson, A. W., Loper, G. L., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 129, Pittsburgh, PA, 1989), p. 533.Google Scholar
16.Bull, S. J., Chalker, P. R., Johnston, C., and Moore, V., Surf. Coat. Technol. 68/69, 603 (1994).CrossRefGoogle Scholar
17.Giling, L. J. and van Enckevort, W. J. P., Surf. Sci. 161, 567 (1985).CrossRefGoogle Scholar
18.Tsuno, T., Tomikawa, T., and Shikata, S., J. Appl. Phys. 75, 1526 (1994).Google Scholar
19.Frank, F. C., Disc. Faraday Soc. 5, 48 (1949).CrossRefGoogle Scholar
20.Burton, W. K., Cabrera, N., and Frank, F. C., Phil. Trans. Roy. Soc. London A243, 299 (1950).Google Scholar
21.Hirth, J. P. and Pound, G. M., J. Chem. Phys. 26, 1216 (1957).CrossRefGoogle Scholar
22.Zhang, Z. M., Cheng, H. M., Li, S. H., Cai, Q. Y., Ling, D. L., Wang, S. J., Hu, Z. W., Jiang, S. S., Ge, C. Z., and Ming, N. B., J. Cryst. Growth 132, 200 (1993).Google Scholar
23.Okada, K., Komatsu, S., Matsumoto, S., and Moriyoshi, Y., J. Cryst. Growth 108, 416 (1991).CrossRefGoogle Scholar
24.Everson, M. P., Tamor, M. A., Scholl, D., Stoner, B. R., Sahaida, S. R., and Bade, J. P., J. Appl. Phys. 75, 169 (1994).CrossRefGoogle Scholar
25.Angus, J. C., Sunkara, M., Sahaida, S. R., and Glass, J. T., J. Mater. Res. 7, 3001 (1992).CrossRefGoogle Scholar
26.Clausing, R. E., Heatherley, L., and Specht, E. D., in Diamond and Diamond-Like Films and Coatings, edited by Clausing, R. E.et al. (Plenum Press, New York, 1991), p. 611.Google Scholar
27.van der Drift, A., Philips Res. Rep. 22, 267 (1967).Google Scholar
28.Yee, A. L. and Chang, R. P. H., in Mechanical Behavior of Diamond and Other Forms of Carbon, edited by Drory, M. D., Bogy, D. B., Donley, M. S., and Field, J. E. (Mater. Res. Soc. Symp. Proc. 383, Pittsburgh, PA, 1995), p. 307.Google Scholar