Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T01:14:31.180Z Has data issue: false hasContentIssue false

Development of high-temperature oxide melt solution calorimetry for p-block element containing materials

Published online by Cambridge University Press:  22 July 2020

Mykola Abramchuk
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California95616, USA School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona85287, USA
Kristina Lilova
Affiliation:
School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona85287, USA
Tamilarasan Subramani
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California95616, USA School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona85287, USA
Ray Yoo
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California95616, USA
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California95616, USA School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona85287, USA
*
a)Address all correspondence to this author. e-mail: alexandra.navrotsky@asu.edu
Get access

Abstract

Understanding the thermodynamic stability of materials plays an essential role in their applications. The high-temperature oxide melt solution calorimetry is a reliable method developed to experimentally measure formation enthalpy. Until now, it has been mostly used for the characterization of oxide materials. We introduce modifications in the experimental technique which makes it suitable for a wide range of non-oxide compounds. The modified methodology was used to measure the heat effects associated with the oxidative dissolution of almost all p-elements of groups III, IV, V, and VI and verified by calculating the standard enthalpies of formation of the corresponding oxides at 298 K. The results presented serve as a compelling database for pure p-elements, which will provide a very straightforward way of calculating the formation enthalpies of non-oxide systems based on high-temperature calorimetric experiments.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Navrotsky, A.: Progress and new directions in calorimetry: A 2014 perspective. J. Am. Ceram. Soc. 97, 33493359 (2014).CrossRefGoogle Scholar
Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89104 (1977).CrossRefGoogle Scholar
Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222241 (1997).CrossRefGoogle Scholar
Akaogi, M., Ross, N.L., McMillan, P., and Navrostky, A.: The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)—thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am. Mineral. 69, 499512 (1984).Google Scholar
Cupid, D.M., Reif, A., and Seifert, H.J.: Enthalpy of formation of Li1+xMn2−xO4 (0 < x < 0.1) spinel phases. Thermochim. Acta 599, 3541 (2015).CrossRefGoogle Scholar
Guillemet-Fritscha, S., Navrotsky, A., Tailhadesa, P., Coradin, H., and Wang, M.: Thermochemistry of iron manganese oxide spinels. J. Solid State Chem. 178, 106113 (2005).CrossRefGoogle Scholar
Bissengaliyeva, M., Ogorodova, L., Vigasina, M., Mel'chakova, L., Kosova, D., Bryzgalov, I., and Ksenofontov, D.: Enthalpy of formation of natural hydrous copper sulfate: Chalcanthite. J. Chem. Thermodyn. 95, 142148 (2016).CrossRefGoogle Scholar
Ogorodova, L.P., Melchakova, L.V., Vigasina, M.F., Ksenofontov, D.A., and Bryzgalo, I.A.: Calorimetric study of natural anapaite. Geochemistry Int. 56, 397401 (2018).CrossRefGoogle Scholar
Ogorodova, L., Vigasina, M., Mel'chakova, L., Rusakov, V., Kosova, D., Ksenofontov, D., and Bryzgalov, I.: Enthalpy of formation of natural hydrous iron phosphate: Vivianite. J. Chem. Thermodyn. 110, 193200 (2017).CrossRefGoogle Scholar
Zhao, M., Russell, P., Amoroso, J., Misture, S., Utlak, S., Besmann, T., Shuller-Nickles, L., and Brinkman, K.S.: Exploring the links between crystal chemistry, cesium retention, thermochemistry and chemical durability in single-phase (Ba,Cs)1.33(Fe,Ti)8O16 hollandite. J. Mater. Sci. 55, 64016416 (2020).CrossRefGoogle Scholar
Lian, J., Helean, K.B., Kennedy, B.J., Wang, L.M., Navrotsky, A., and Ewing, R.C.: Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J. Phys. Chem. B 110, 23432350 (2006).CrossRefGoogle ScholarPubMed
Navrotsky, A.: Thermochemistry of complex perovskites. AIP Conf. Proc. 535, 288296 (2000).CrossRefGoogle Scholar
Takayama-Muromachi, E. and Navrotsky, A.: Energetics of compounds (A2+B4+O3) with the perovskite structure. J. Solid State Chem. 72, 244256 (1988).CrossRefGoogle Scholar
Cupid, D.M., Li, D., Gebert, C., Reif, A., Flandoreer, H., and Seifert, H.J.: Enthalpy of formation and heat capacity of Li2MnO3. J. Ceram. Soc. JPN. 124, 10721082 (2016).CrossRefGoogle Scholar
Morcos, R.M., Mitterbauer, C., Browning, N., Risbud, S., and Navrotsky, A.: Energetics of CdSxSe1-x quantum dots in borosilicate glasses. J. Non-Cryst. Solids 353, 27852795 (2007).CrossRefGoogle Scholar
Xu, F. and Navrotsky, A.: Enthalpies of formation of pyrrhotite Fe1-0.125xS (0 ≤ x ≤ 1) solid solutions. Am. Miner. 95, 717723 (2010).CrossRefGoogle Scholar
Tavakoli, A.H. and Navrotsky, A.: Enthalpies of formation of Fe-Ni monosulfide solid solutions. Am. Miner. 98, 15081515 (2013).CrossRefGoogle Scholar
Tessier, F., Navrotsky, A., Niewa, R., Leineweber, A., Jacobs, H., Kikkawa, S., Takahashi, M., Kanamaru, F., and DiSalvo, F.J.: Energetics of binary iron nitrides. Solid State Sci. 2, 457462 (2000).CrossRefGoogle Scholar
Ranade, M.R., Tessier, F., Navrotsky, A., Leppert, V.J., Risbud, S.H., DiSalvo, F.J., and Balkas, C.M.: Enthalpy of formation of gallium nitride. J. Phys. Chem. B 104, 40604063 (2000).CrossRefGoogle Scholar
McHale, J.M., Navrotsky, A., Kowach, G.R., Balbarin, V.E., and DiSalvo, F.J.: Energetics of ternary nitrides: Li-Ca-Zn-N and Ca-Ta-N systems. Chem. Mater. 9, 15381546 (1997).CrossRefGoogle Scholar
Xu, F., Ma, X., Kauzlarich, S.M., and Navrotsky, A.: Enthalpies of formation of CdSxSe1–x solid solutions. J. Mater. Res. 24, 13681374 (2009).CrossRefGoogle Scholar
Guo, X., White, J.T., Nelson, A.T., Migdisov, A., Roback, R., and Xu, H.: Enthalpy of formation of U3Si2: A high-temperature drop calorimetry study. J. Nucl. Mater. 507, 4449 (2018).CrossRefGoogle Scholar
Zaikina, J.V., Muthuswamy, E., Lilova, K.I., Gibbs, Z.M., Zeilinger, M., Snyder, G.J., Fa¨ssler, T.F., Navrotsky, A., and Kauzlarich, S.M.: Thermochemistry, morphology, and optical characterization of germanium allotropes. Chem. Mater. 26, 32633271 (2014).CrossRefGoogle Scholar
Mera, G., Navrotsky, A., Sen, S., Kleebed, H.-J., and Riedela, R.: Polymer-derived SiCN and SiOC ceramics—structure and energetics at the nanoscale. J. Mater. Chem. A 1, 38263836 (2013).CrossRefGoogle Scholar
Morcos, R.M., Mera, G., Navrotsky, A., Varga, T., Riedel, R., Poli, F., and Muller, K.: Enthalpy of formation of carbon-rich polymer-derived amorphous SiCN ceramics. J. Am. Ceram. Soc. 91, 33493354 (2008).CrossRefGoogle Scholar
Meschel, S.V. and Kleppa, O.J.: Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry. J. Alloys Compd. 191, 111116 (1993).CrossRefGoogle Scholar
Meschel, S.V. and Kleppa, O.J.: Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry. J. Alloys Compd. 257, 227233 (1997).CrossRefGoogle Scholar
Hayun, S., Salhov, S., Lilova, K. and Navrotsky, A., Enthalpies of formation of high entropy and multicomponent alloys using oxide melt solution calorimetry. Submitted, 2020.CrossRefGoogle Scholar
Glushko, V., Medvedev, V., Bergman, G., Vasilev, B.P., Gurvich, L.V., Alekseev, V.I., Kolesov, V.P., Yungman, V.S., Ioffe, N., Vorabev, A.F., Reznitskii, L.A., Khodakovskii, I.L., Smirnova, N.L., Galchenko, G., and Baibuz, V.F.: Thermicheskie konstanti veshtestv (Academy of Science, Moscow, U.S.S.R, 1972).Google Scholar
Ranade, M.R., Tessier, F., Navrotsky, A., and Marchand, R.: Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 28242831 (2001).CrossRefGoogle Scholar
Cordfunke, E.H.P. and Westrum, E.F. Jr.: The heat capacity and derived thermophysical properties of In2O3 from 0 to 1000 K. J. Phys. Chem. Solids 53, 361365 (1992).CrossRefGoogle Scholar
Cordfunke, E.H.P., Konings, R.J.M., and Ouweltjes, W.: The standard enthalpy of formation of In2O3. J. Chem. Thermodyn. 23, 451454 (1991).CrossRefGoogle Scholar
Gross, P., Hayman, C., and Bingham, J.T.: Heats of formation of germanium tetrafluoride and of the germanium dioxides. Trans. Faraday Soc. 62, 23882394 (1966).CrossRefGoogle Scholar
Navrotsky, A. and Kasper, R.B.: Spinel disproportionation at high pressure: Calorimetric determination of enthalpy of formation of Mg2SnO4 and Co2SnO4 and some implications for silicates. Earth Planet. Sci. Lett. 31, 247254 (1976).CrossRefGoogle Scholar
Robie, R.A. and Hemingway, B.S.: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10^5 pascals) Pressure and at Higher Temperatures (United States Government Printing Office, Washington, DC, 1995).Google Scholar
Majzlan, J., Navrotsky, A., and Neil, J.M.: Energetics of anhydrite, barite, celestine, and anglesite: A high-temperature and differential scanning calorimetry study. Geochim. Cosmochim. Acta 66, 18391850 (2002).CrossRefGoogle Scholar
Chase, M.W. Jr., Davies, C.A., Downey, J.R. Jr., Frurip, D.J., McDonald, R.A., and Syverud, A.N.: JANAF Thermochemical Tables. Third edition. Part II. Cr–Zr. J. Phys. Chem. Ref. Data 14(Suppl. 1) (1985).Google Scholar
Martienssen, e. W.: Thermodynamic properties of inorganic materials compiled by SGTE .In Numerical Data and Functional Relationships in Science and Technology, Martienssen, W, ed. (Vol. IV/19A1). Springer-Verlag, Berlin, 1999Google Scholar
Mielewczyk-Gryn, A., Wachowski, S., Lilova, K.I., Guo, X., Gazda, M., and Navrotsky, A.: Influence of antimony substitution on spontaneous strain and thermodynamic stability of lanthanum orthoniobate. Ceram. Int. 41, 21282133 (2015).CrossRefGoogle Scholar
Tran, T.B. and Navrotsky, A.: Energetics of dysprosia-stabilized bismuth oxide electrolytes. Chem. Mater. 24, 41854191 (2012).CrossRefGoogle Scholar
Olin, Å, Noläng, B., Osadchii, E.G., Öhman, L.-O., and Rosen, E.: Chemical Thermodynamics of Selenium, Vol. 7 (Elsevier, Amsterdam, 2005).Google Scholar
Cordfunke, E.H.P., Ouweltjes, W., and Prins, G.: Standard enthalpies of formation of tellurium compounds I. Tellurium dioxide. J. Chem. Thermodyn. 19, 369375 (1987).CrossRefGoogle Scholar
Tavakoli, A.H., Golczewski, J.A., and Bill, A.N.J.: Effect of boron on the thermodynamic stability of amorphous polymer-derived Si(B)CN ceramics. Acta Mater. 60, 45144522 (2012).CrossRefGoogle Scholar
Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Mahfoud, R.B., Melançon, J., Pelton, A.D., and Petersen, S.: FactSage thermochemical software and databases. Calphad 26, 189228 (2002).CrossRefGoogle Scholar
Ushakov, S.V., Helean, K.B., Navrotsky, A., and Boatner, L.A.: Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16, 26232633 (2001).CrossRefGoogle Scholar
Varga, T., Navrotsky, A., Moats, J.L., Morcos, R.M., Poli, F., Müller, K., Saha, A., and Raj, R.: Thermodynamically stable SixOyCz polymer-like amorphous ceramics. J. Am. Ceram. Soc. 90, 32133219 (2007).CrossRefGoogle Scholar
Akselrud, L. and Grin, Y.: WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803805 (2014).CrossRefGoogle Scholar