Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T03:29:36.955Z Has data issue: false hasContentIssue false

Development of preferred orientation in polycrystalline AlN thin films deposited by rf sputtering system at low temperature

Published online by Cambridge University Press:  31 January 2011

A. Rodríguez-Navarro
Affiliation:
Instituto Andaluz de Ciencias de la Tierra-CSIC, Campus de Fuentenueva, 18002 Granada, Spain
W. Otaño-Rivera
Affiliation:
Materials Research Lab., The Pennsylvania State University, University Park, Pennsylvania 16802
J. M. García-Ruiz
Affiliation:
Instituto Andaluz de Ciencias de la Tierra-CSIC, Campus de Fuentenueva, 18002 Granada, Spain
R. Messier
Affiliation:
Materials Research Lab., The Pennsylvania State University, University Park, Pennsylvania 16802
L. J. Pilione
Affiliation:
Materials Research Lab., The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The development of preferred orientation in AlN thin films deposited on silica glass substrates by rf sputtering at low substrate temperature (<150 °C) has been studied. The main factors controlling the preferential orientation of the AlN thin films are the ion-bombardment energies, incidence angle of the arriving particles, and deposition rate. At low pressure, a perpendicular and highly directional energetic ion-bombardment induces an orientation of the crystallites with their c-axis perpendicular to the substrate surface. At higher pressure (>15 mTorr), a spreading in the incidence angle of the arriving particles, due to gas phase collisions, favors the formation of AlN crystal twinning. A change in the preferred orientation of the films from (0001) to (1011) for deposition rates above 1.8 Å/s is observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Okano, H., Takahashi, Y., Tanaka, T., Shibata, K., and Nakano, S., Jpn. J. Appl. Phys. 31, 3446 (1992).Google Scholar
2.Kuo, P. K., Auner, G. W., and Wu, Z. L., Thin Solid Films 253, 223 (1994).Google Scholar
3.Rodríguez-Clemente, R., Aspar, B., Azema, N., Armas, B., Combescure, C., Durand, J., and Figueras, A., J. Cryst. Growth 133, 59 (1993).Google Scholar
4.Huddlestone, R. H. and Leonard, S. L., Plasma Diagnostic Techniques (Academic Press, New York, 1965), p. 113.Google Scholar
5.Ross, R. C. and Messier, R., J. Appl. Phys. 52, 5329 (1981).Google Scholar
6.Schulz, L. G., J. Appl. Phys. 20, 1030 (1949).Google Scholar
7.Roy, R. A. and Messier, R., J. Vac. Sci. Technol. A 2, 312 (1984).Google Scholar
8.Klein, C. and Hurlbut, C. S., Manual of Mineralogy (John Wiley & Sons Inc., New York, 1993), p. 105.Google Scholar
9. A detailed study of the film morphology will be published elsewhere.Google Scholar
10.Bienk, E. J., Jensen, H., Pedersen, G. N., and Sørensen, G., Thin Solid Film 230, 121 (1993).Google Scholar
11.Okano, H., Takahashi, Y., Tanaka, T., Shibata, K., and Nakano, S., Jpn. J. Appl. Phys. 31, 3446 (1992).Google Scholar
12.Huffman, G. L., Fahnline, D. E., Messier, R., and Pilione, L. J., J. Vac. Sci. Technol. A 7, 2252 (1989).Google Scholar
13.Harper, J. M. E., Cuomo, J. J., and Hentzell, H. T. G., Appl. Phys. Lett. 43, 547 (1983).Google Scholar
14.Windischmann, H., Thin Solid Films 154, 159 (1987).CrossRefGoogle Scholar
15.Winters, H. F. and Horne, D. E., Surf. Sci. 24, 587 (1971).Google Scholar
16.Hu, H. K., Murray, P. T., Fukod, Y., and Rabalais, J. W., J. Chem. Phys. 74, 2247 (1981).Google Scholar
17.Windischmann, H., Thin Solid Films 154, 159 (1987).CrossRefGoogle Scholar
18.Gesang, W. R., Oechsner, H., and Schoof, H., Nucl. Instrum. Methods 132, 687 (1976).Google Scholar
19.Rodríguez–Navarro, A., Otaño–Rivera, W., García–Ruiz, J. M., Messier, R., and Pilione, L. J., J. Mater. Res. 12, 1689 (1997).Google Scholar
20.Tominaga, K., Ueshiba, N., Shintani, Y., and Tada, O., Jpn. J. Appl. Phys. 20, 519 (1981).Google Scholar
21.Hergt, R. and Pfeiffer, H., Phys. Status Solidi (a) 92, K 89 (1985).Google Scholar
22.Bienk, E. J., Jensen, H., Pedersen, G. N., and Sørensen, G., Thin Solid Film 230, 121 (1993).Google Scholar
23.Goto, T., Tsuneyoshi, J., Kaya, K., and Hirai, T., J. Mater. Sci. 27, 247 (1992).Google Scholar
24.Meng, W. J. and Doll, G. L., J. Appl. Phys. 79, 1788 (1996).Google Scholar