Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:14:39.744Z Has data issue: false hasContentIssue false

Di- and tri-carboxylic-acid-based etches for processing high temperature superconducting thin films and related materials

Published online by Cambridge University Press:  03 March 2011

D.S. Ginley
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
L. Barr
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
C.I.H. Ashby
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
T.A. Plut
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
D. Urea
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
M.P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
J.S. Martens
Affiliation:
Conductus, Sunnyvale, California 94086
M.E. Johansson
Affiliation:
Conductus, Sunnyvale, California 94086
Get access

Abstract

The development of passive and active electronics from high-temperature superconducting thin films depends on the development of process technology capable of producing appropriate feature sizes without degrading the key superconducting properties. We present a new class of chelating etches based on di- and tri-carboxylic acids that are compatible with positive photoresists and can produce submicron feature sizes while typically producing increases in the microwave surface resistance at 94 GHz by less than 10%. This simple etching process works well for both the Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O systems. In addition, we demonstrate that the use of chelating etches with an activator such as HF allows the etching of related oxides such as LaAlO3, which is a key substrate material, and Pb(Zr0.53Ti0.47)O3 (PZT) which is a key ferroelectric material for HTS and other applications such as nonvolatile memories.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vasquez, R. P., Hunt, B. D., and Foote, M. C., Appl. Phys. Lett. 53, 2692 (1988).CrossRefGoogle Scholar
2Bowman, P. T., Ko, E. I., and Sides, P. J., J. Electrochem. Soc. 137, 1309 (1990).CrossRefGoogle Scholar
3Martens, J. S., Zipperian, T. E., Ginley, D. S., Hietala, V. M., Tigges, C. P., and Plut, T. A., J. Appl. Phys. 69, 8261 (1991).CrossRefGoogle Scholar
4Sheais, J. R., Merchant, P. M., Amano, J., Taber, R. C., and Newman, N., in Effects of Processing on Electrical Properties of YBa2Cu3O7 Films Prepared by Different Methods (Mater. Res. Soc. Symp. Proa, Pittsburgh, PA, 1991).Google Scholar
5Vasquez, R. P., Foote, M. C., and Hunt, B. D., Appl. Phys. Lett. 55, 1801 (1989).CrossRefGoogle Scholar
6Vasquez, R. P., Hunt, B. D., and Foote, M. C., J. Electrochem. Soc. 137, 2344 (1990).CrossRefGoogle Scholar
7James, P. M., Thompson, E. J., and Ellis, A. B., Chem. Mater. 3, 1087 (1991).CrossRefGoogle Scholar
8Shokoohi, F. K., Schiavone, L. M., Rogers, C. T., Inman, A., Wu, X. D., Nazar, L., and Venkatesan, T., Appl. Phys. Lett. 55, 2661 (1989).CrossRefGoogle Scholar
9Ashby, C. I. H., Martens, J., Plut, T. A., Ginley, D. S., and Phillips, J. M., Appl. Phys. Lett. 60, 2147 (1992).CrossRefGoogle Scholar
10Equilibrium constant information was obtained from a number of sources including (a) Dialog search on Beilstein (c) (Springer-Verlag, New York, 1992); (b) Budavari, S., Merck Index (Merck & Co. Inc., Rattaway, NJ, 1989), pp. 27, 363, 702, 896, 1093, 1399; (c) Skorik, N. A., Reakts. Sposobn. Veshchestv, edited by Serebrennikov, and Tomskii, V. V., “Phase Equilibriums, Chemical Equilibriums and Solutions” (University of Toms., USSR, 1978), pp. 3-8; (d) Fan, X.J., Colic, M., Kallay, N., and Matijevic, E., Colloid and Polymer Sci. 266, 580 (1988); (f) Fujihara, T., Jpn. J. Oral Biol. 30, 54 (1988).Google Scholar
11Siegal, M. P., Phillips, J.M., Hsieh, Y. F., and Marshall, J., Physica C 172, 282 (1990).CrossRefGoogle Scholar
12Ginley, D. S., Kwak, J. F., Venturini, E. L., Morosin, B., and Baughman, R. J., Physica C 160, 42 (1989).CrossRefGoogle Scholar
13Martens, J. S., Hietala, V. M., Ginley, D. S., Zipperian, T. E., and Hohenwarter, G. K. G., Appl. Phys. Lett. 58, 2543 (1991).CrossRefGoogle Scholar
14(a) Shelke, D. N. and Jahaqirdar, D. V., J. Indian Chem. Soc. 58, 580 (1981); (b) Jauker, C. and Pietsch, R., Anal. Chim. Acta 90, 349 (1977); (c) Skorik, N. A. and Kumok, V.N., Zh. Neorg. Khim. 14, 98 (1969); (d) Kumok, V.N. and Skorik, N.A., Zh. Neorg. Khim. 15, 291 (1970); (e) Boltari, E., Jasionowska, R., and Porto, R., Ann. Chim. (Rome) 72, 333 (1982).Google Scholar
15Fujihara, T., Shika Kiso Igakkai Zasshi 30, 54 (1988); Davies, G., Trans. Faraday Soc. 49, 1405 (1953).Google Scholar
16Rosamilia, J. M., Miller, B., Shneemeyer, L. F., Waszcak, J. V., and O'Bryan, H.M., J. Electrochem. Soc. 134, 1863 (1987).CrossRefGoogle Scholar
17Martens, J. S., Hietala, V. M., Plut, T. A., Ginley, D. S., Vawter, G. A., Tigges, C. P., Siegal, M. P., Phillips, J. M., and Hou, S. Y., IEEE Trans. Appl. Supercond. 3, 2295 (1993).CrossRefGoogle Scholar