Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T15:35:23.064Z Has data issue: false hasContentIssue false

Diagnostics and Modeling of Nanopowder Synthesis in Low Pressure Flames

Published online by Cambridge University Press:  31 January 2011

N. G. Glumac
Affiliation:
Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855
Y-J. Chen
Affiliation:
Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855
G. Skandan
Affiliation:
Nanopowder Enterprises Inc., an SMT company, Piscataway, New Jersey 08854
Get access

Abstract

Laser-induced fluorescence, thermophoretic sampling, laser light scattering, and emission spectroscopy have been used to probe low pressure hydrogen/oxygen flames in which 3–50 nm, loosely agglomerated oxide nanopowders have been synthesized at high production rates by the pyrolysis of precursor vapors, followed by condensation in the gas phase. These measurements have enabled the identification of pyrolysis, condensations, and particle growth regions in the flame. Flame simulations using a one-dimensional stagnation flow model, with complex chemistry, demonstrate that the chemical and thermal flame structure can be accurately predicted for flames without a precursor. Furthermore, some flame structure changes induced by the addition of a precursor can be simulated by addition of analogous species to the chemical mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, Y-J., Glumac, N. G., Skandan, G., and Kear, B. H., Mater. Lett. 34, 148 (1998).Google Scholar
2.Chen, Y-J., Glumac, N. G., Skandan, G., and Kear, B. H., “High-rate Production of High Purity, ‘Non-agglomerated’ Oxide Nanopowders in Flames,” 1996 Fall National Meeting, American Chemical Society, Orlando, FL.CrossRefGoogle Scholar
3.Chen, Y., Glumac, N., Kear, B. H., and Skandan, G., Nanostructured Mater. 9, 101 (1997).CrossRefGoogle Scholar
4.Chung, S. L. and Katz, J. L., Combustion and Flame 61, 271 (1985).CrossRefGoogle Scholar
5.Xing, Y., Köylü, Ü. Ö., and Rosner, D. E., Combust. Flame 107, 85 (1996).CrossRefGoogle Scholar
6.Pratsinis, S. E., Zhu, W., and Vemury, S., Powder Technology 86, 87 (1996).CrossRefGoogle Scholar
7.Katz, J. L. and Hung, C-H., Twenty-third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1990).Google Scholar
8.Chung, S-L., Tsai, M-S., and Lin, H-D., Combust. Flame 85, 134 (1991).CrossRefGoogle Scholar
9.Katz, J. L. and Hung, C-H., Combust. Sci. Technol. 82, 169 (1992).CrossRefGoogle Scholar
10.Lindackers, D., Strecker, M. G. D., and Roth, P., Nanostructured Mater. 4, 545 (1994).CrossRefGoogle Scholar
11.McMillin, B. K., Biswas, P., and Zachariah, M. R., J. Mater. Res. 11, 1552 (1996).CrossRefGoogle Scholar
12.Evans, G. and Greif, R., Trans. ASME 109, 928 (1987).CrossRefGoogle Scholar
13.Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R., J. Fluid Mech. 101, 737 (1980).CrossRefGoogle Scholar
14.Glumac, N. G. and Goodwin, D. G., Combustion and Flame 105, 321 (1996).CrossRefGoogle Scholar
15.Miller, J. A. and Bowman, C. T., Prog. Energy Combust. Sci. 15, 287 (1989).CrossRefGoogle Scholar
16.Kee, R. J., Rupley, F. M., and Miller, J. A., Technical Report SAND89–8009, Sandia National Laboratories (1989).Google Scholar
17.Glumac, N. G. and Chen, Y-J., “Laser-Induced Fluorescence Measurements for Hydroxyl Radicals and Temperature in Nanopowder-producing Flames,” Laser Applications in Chemical and Environmental Analysis Conference, Optical Society of America, 1996.CrossRefGoogle Scholar
18.Glumac, N. G., Combust. Sci. Technol. 122, 383 (1997).CrossRefGoogle Scholar
19.Zachariah, M. R. and Burgess, D. R. F., Jr., J. Aerosol Sci. 25, 487 (1994).CrossRefGoogle Scholar
20.Bengtsson, P. E. and Alden, M., Appl. Phys. B 48, 155 (1989).CrossRefGoogle Scholar
21.Shukla, V. I., Skandan, G., and Glumac, N., unpublished.Google Scholar
22.Dandy, D. S. and Vosen, S. R., Combust. Sci. Technol. 82, 131 (1992).CrossRefGoogle Scholar