Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T02:16:00.909Z Has data issue: false hasContentIssue false

Diamond nucleation on unscratched silicon substrates coated with various non-diamond carbon films by microwave plasma-enhanced chemical vapor deposition

Published online by Cambridge University Press:  03 March 2011

Z. Feng
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
M.A. Brewer
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
K. Komvopoulos
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
I.G. Brown
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
D.B. Bogy
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
Get access

Abstract

The efficacy of various non-diamond carbon films as precursors for diamond nucleation on unscratched silicon substrates was investigated with a conventional microwave plasma-enhanced chemical vapor deposition system. Silicon substrates were partially coated with various carbonaceous substances such as clusters consisting of a mixture of C60 and C70, evaporated films of carbon and pure C70, and hard carbon produced by a vacuum are deposition technique. For comparison, diamond nucleation on silicon substrates coated with submicrometer-sized diamond particles and uncoated smooth silicon surfaces was also examined under similar conditions. Except for evaporated carbon films, significantly higher diamond nucleation densities were obtained by subjecting the carbon-coated substrates to a low-temperature high-methane concentration hydrogen plasma treatment prior to diamond nucleation. The highest nucleation density (∼3 × 108 cm−2) was obtained with hard carbon films. Scanning electron microscopy and Raman spectroscopy demonstrated that the diamond nucleation density increased with the film thickness and etching resistance. The higher diamond nucleation density obtained with the vacuum are-deposited carbon films may be attributed to the inherent high etching resistance, presumably resulting from the high content of sp3 atomic bonds. Microscopy observations suggested that diamond nucleation in the presence of non-diamond carbon deposits resulted from carbon layers generated under the pretreatment conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).CrossRefGoogle Scholar
2Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
3Field, J. E., The Properties of Diamond (Academic Press, London, 1979).Google Scholar
4See, for example, Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier, Amsterdam, The Netherlands, 1991).Google Scholar
5Ong, T. P. and Chang, R.P.H., Appl. Phys. Lett. 55, 2063 (1989).CrossRefGoogle Scholar
6Dubray, J. J., Yarbrough, W. A., and Pantano, C. G., in Diamond and Diamond-Like Films and Coatings, edited by Clausing, R. E., Horton, L. L., Angus, J. C., and Koidl, P., NATO ASI Series B: Physics 266 (Plenum Press, New York, 1991), p. 619.CrossRefGoogle Scholar
7Iijima, S., Aikawa, Y., and Baba, K., J. Mater. Res. 6, 1491 (1991).CrossRefGoogle Scholar
8Kobashi, K., Miyata, K., Kumagai, K., Nakaue, A., Tachibana, H., Inoue, T., and Kawate, Y., Extended Abstracts, Electrochem. Soc. 89–1, 122 (1989).Google Scholar
9Ramesham, R. and Roppel, T., J. Mater. Res. 7, 1144 (1992).CrossRefGoogle Scholar
10Rudder, R. A., Hudson, G. C., Hendry, R. C., Thomas, R. E., Posthill, J. B., and Markunas, R. J., in Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier, Amsterdam, The Netherlands, 1991), p. 395.Google Scholar
11Pehrsson, P. E., Glesener, J., and Morrish, A., Thin Solid Films 212, 81 (1992).CrossRefGoogle Scholar
12Meilunas, R. J., Chang, R. P. H., Liu, S., and Kappes, M. M., Appl. Phys. Lett. 59, 3461 (1991).CrossRefGoogle Scholar
13Hartnett, T., Miller, R., Montanari, D., Willingham, C., and Tustison, R., J. Vac. Sci. Technol. A 8, 2129 (1990).CrossRefGoogle Scholar
14Ravi, K. V. and Koch, C. A., Appl. Phys. Lett. 57, 348 (1990).CrossRefGoogle Scholar
15Feng, Z., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Appl. Phys. 74, 2841 (1993).CrossRefGoogle Scholar
16Feng, Z., Komvopoulos, K., Brown, I. G., and Bogy, D. B., J. Mater. Res. 9, 2148 (1994).CrossRefGoogle Scholar
17McKenzie, D.R., Miiller, D., Pailthorpe, B. A., Wang, Z. H., Kravtchinskaia, E., Segal, D., Lukins, P. B., Swift, P. D., Martin, P. J., Amaratunga, G., Gaskell, P. H., and Saeed, A., Diamond Relat. Mater. 1, 51 (1991).CrossRefGoogle Scholar
18Anders, S., Anders, A., and Brown, I., J. Appl. Phys. 74, 4239 (1993).CrossRefGoogle Scholar
19Salvadori, M. C., Ager, J.W. III, and Brown, I.G., Diamond Relat. Mater. 1, 818 (1992).CrossRefGoogle Scholar
20Brewer, M. A., Brown, I. G., Dickinson, M. R., Galvin, J. E., MacGill, R. A., and Salvadori, M. C., Rev. Sci. Instrum. 63, 3389 (1992).CrossRefGoogle Scholar
21Abrefah, J., Olander, D. R., Balooch, M., and Siekhaus, W. J., Appl. Phys. Lett. 60, 1313 (1992).CrossRefGoogle Scholar
22Aisenberg, S., J. Vac. Sci. Technol. A 8, 2150 (1990).CrossRefGoogle Scholar
23Robertson, J., Prog. Solid State Chem. 21, 199 (1991).CrossRefGoogle Scholar
24Williams, B. E. and Glass, J. T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
25Stoner, B. R. and Glass, J. T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
26Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar