Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T17:10:59.270Z Has data issue: false hasContentIssue false

Dielectric properties of oxide structures by a laser-based direct-writing method

Published online by Cambridge University Press:  31 January 2011

D. Young
Affiliation:
Naval Research Laboratories, Washington, D.C. 20375-5345
H. D. Wu
Affiliation:
Naval Research Laboratories, Washington, D.C. 20375-5345
R. C. Y. Auyeung
Affiliation:
Naval Research Laboratories, Washington, D.C. 20375-5345
R. Modi
Affiliation:
Naval Research Laboratories, Washington, D.C. 20375-5345
J. Fitz-Gerald
Affiliation:
Naval Research Laboratories, Washington, D.C. 20375-5345
A. Pique
Affiliation:
Naval Research Laboratories, Washington, D.C. 20375-5345
D. B. Chrisey
Affiliation:
Naval Research Laboratories, Washington, D.C. 20375-5345
P. Atanassova
Affiliation:
Superior Micropowders, Albuquerque, New Mexico 87109
T. Kodas
Affiliation:
Superior Micropowders, Albuquerque, New Mexico 87109
Get access

Abstract

Matrix-assisted pulsed laser evaporation direct-write (MAPLE-DW) is a laser-based method of directly writing mesoscopic patterns of electronic materials. Patterns of composite BaTiO3/SiO2/TiO2 dielectric material were written onto Pt/Au interdigitated-electrode test structures, with precise control over final dielectric properties. Scanning electron microscopy indicates random close-packed structures of BaTiO3 and SiO3 particles, with interstitial spaces partially filled with titania. Depending on the BaTiO3:silica ratio, the dielectric constant ranged from 5 to 55 and followed a 4-component logarithmic rule of mixing. This work demonstrates that the transfer process and the final material properties of MAPLE-DW oxide materials are largely decoupled.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yan, X. and Gu, P., Comput.-Aided Des. 28, 307 (1996).CrossRefGoogle Scholar
2.Maddox, R. and Knesek, J., Aerosp. Am. 31, 28 (1993).Google Scholar
3.Esrom, H., Zhang, J-Y., Kogelschatz, U., and Pedraza, A.J., Appl. Surf. Sci. 86, 202 (1995).CrossRefGoogle Scholar
4.Pique, A., McGill, R.A., Chrisey, D.B., Leonhardt, D., Mslna, T.E., Spargo, B.J., Callahan, J.H., Vachet, R.W., Chung, R., and Bucaro, M.A., Thin Solid Films 355–356, 536 (1999).CrossRefGoogle Scholar
5.Pique, A., Chrisey, D.B., Auyeung, R.C.Y., Fitz-Gerald, J., Wu, H.D, McGill, R.A., Lakeou, S., Wu, P.K., Nguyen, V., and Duignan, Appl. Phys. A 69 (suppl), S279 (1999).Google Scholar
6.Chrisey, D.B., Pique, A., Fitz-Gerald, J., Auyeung, R.C.Y., McGill, R.A., Wu, H.D., and Duignan, M., Appl. Surf. Sci. 154–155, 593 (2000).CrossRefGoogle Scholar
7.Zergioti, I., Mailis, S., Vainos, N.A., Papakonstantinou, P., Kalpouzos, C., Grigoropoulos, C.P., and Fotakis, C., Appl. Phys. A 66, 579 (1998).CrossRefGoogle Scholar
8.Fitz-Gerald, J.M., Pique, A., Chrisey, D.B., Rack, P.D., Zeleznik, M., Auyeung, R.C.Y., and Lakeou, S., Appl. Phys. Lett. 76, 1386 (2000).CrossRefGoogle Scholar
9.Pique, A., Chrisey, D.B., Fitz-Gerald, J.M., McGill, R.A., Auyeung, R.C.Y., Wu, H.D., Lakeou, S., Nguyen, V., Chung, R., and Duignan, M., J Mater. Res. 15, 1872 (2000).CrossRefGoogle Scholar
10.Ringeisn, B.R., Chrisey, D.B., Piqué, A., Young, H.D., Modi, R., Bucaro, M., Jones-Meehan, J., and Spargo, B.J., Biomaterials (to be published, 2000).Google Scholar
11.Fitz-Gerald, J.M., Wu, H.D., Pique, A., Horwitz, J.S., Auyeung, R.C.Y., Chang, W., Kim, W.J., and Chrisey, D.B., Integr. Ferroelectr. 29, 13 (2000).CrossRefGoogle Scholar
12.Topfer, Morton L., Thick-film Microelectronics; Fabrication, Design, and Applications (Van Nostrand Reinhold Co., New York, 1971).Google Scholar
13.Torquato, S., Truskett, T.M., and Debenedetti, P.G., Phys. Rev. Lett. 84, 2064 (2000).CrossRefGoogle Scholar
14.Pouliquen, O., Nicolas, M., and Weidman, P.D., Phys. Rev. Lett. 79, 3640 (1997).CrossRefGoogle Scholar
15.Steinmann, P.A. and Hintermann, H.E., J. Vac. Sci. Technol. A 7, 2267 (1989).CrossRefGoogle Scholar
16.McNeal, M.P., Jang, S-J., and Newnham, R.E., Proc. Tenth IEEE Int. Symp. Appl. Ferroelectr. ISAF 2, 837 (1996).CrossRefGoogle Scholar