Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:21:58.063Z Has data issue: false hasContentIssue false

Diffuse Dielectric Anomaly in MnO2-doped Pb0.9La0.1TiO3 Ceramic in the Temperature Range of 400–700 °C

Published online by Cambridge University Press:  31 January 2011

Byung Sung Kang
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373–1, Kusong-dong, Yusong-gu, Taejon, 305–701, Korea
Si Kyung Choi
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373–1, Kusong-dong, Yusong-gu, Taejon, 305–701, Korea
Get access

Abstract

The diffuse dielectric anomaly observed in the temperature range of 400–700 °C was investigated in MnO2-doped Pb0.9La0.1TiO3 ceramic. The frequency and the temperature dependence of the dielectric relaxation behavior in the diffuse dielectric anomaly were analyzed with the modified Debye equation. The dielectric relaxation strength was considered an important fitting variable in the modified Debye equation. The temperature-dependent behavior of the diffuse dielectric anomaly was successfully described by introduction of the exponential decay form for the relaxation strength inthe modified Debye equation.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stumpe, R., Wagner, D., and Bauerle, D., Phys. Status Solidi A 75, 143 (1983).CrossRefGoogle Scholar
Bidault, O., Goux, P., Kchikech, M., Belkaoumi, M., and Maglione, M., Phys. Rev. B 49, 7868 (1994).CrossRefGoogle Scholar
Yu, Z., Ang, C., Vilarinho, P.M., Mantas, P.Q., and Baptista, J.L., J. Appl. Phys. 83, 4874 (1998).CrossRefGoogle Scholar
Ang, C., Yu, Z. and Cross, L.E., Phys. Rev. B 62, 228 (2000).CrossRefGoogle Scholar
Kuwabara, M., Goda, K., and Oshima, K., Phys. Rev. B 42, 10012 (1990).CrossRefGoogle Scholar
Goda, K. and Kuwabara, M., in Ceram. Trans. 22, 503 (1991).Google Scholar
Dai, X., Li, Z., Xu, X.Z., Chan, S.K., and Lam, D.J., Ferroelectrics 135, 39 (1992).CrossRefGoogle Scholar
Leamanov, V.V., Smirnova, E.P., Sotnikov, A.V., and Weihnacht, M., Appl. Phys. Lett. 77, 4205 (2000).CrossRefGoogle Scholar
Bidault, O., Maglione, M., Actis, M., and Kchikech, M., Phys. Rev. B 52, 4191 (1995).CrossRefGoogle Scholar
Ang, C., Yu, Z., Hemberger, J., Lunkenheimer, P., and Loidl, A., Phys. Rev. B 59, 6665 (1999).CrossRefGoogle Scholar
Ang, C., Guo, R., Bhalla, A.S., and Cross, L.E., J. Appl. Phys. 87, 7452 (2000).CrossRefGoogle Scholar
Cole, K.S. and Cole, R.H., J. Chem. Phys. 9, 341 (1941).CrossRefGoogle Scholar
Zheludev, I.S., in Physics of Crystalline Dielectrics (Plenum Press, New York, 1971).CrossRefGoogle Scholar
Hench, L.L. and West, J.K., in Principles of Electronic Ceramics (John Wiley & Sons, New York, 1990).Google Scholar
Coelho, R., in Physics of Dielectrics (Elsevier, New York, 1978).Google Scholar
Scott, J.F., J. Phys.: Condens. Matter 11, 8149 (1999).Google Scholar
Xu, Y., in Ferroelectric Materials and Their Application (Elsevier Science, New York, 1991).Google Scholar
Bidault, O., Maglione, M., Actis, M., and Kchikech, M., Phys. Rev. B 52, 4191 (1995).CrossRefGoogle Scholar
Lemanov, V.V., Simirnova, E.P., Sotnikov, A.V., and Weihnacht, M., Appl. Phys. Lett. 77, (2000).CrossRefGoogle Scholar
Zhy, Y., Chen, A., Vilarinho, P.M., Mantas, P.Q., and Baptista, J.L., J. Eur. Ceram. Soc. 18, 1621 (1998).CrossRefGoogle Scholar
Mizaras, R. and Loidl, A., Phys. Rev. B 56, 10726 (1997).CrossRefGoogle Scholar
Ang, C., Scott, J.F., Yu, Z., Ledbetter, H., and Baptista, J.L., Phys. Rev. B 59, 6661 (1999).CrossRefGoogle Scholar