Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T17:41:57.811Z Has data issue: false hasContentIssue false

Diffusion markers in thin-film VA13, Co2Al9, CrAl7, MoAl12, and Ni3Al formation

Published online by Cambridge University Press:  29 June 2016

E.G. Colgan
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

The dominant diffusing species in VA13, Co2Al9, CrAl7, and MoAl12 formation was determined. These are the initial phases to form in metal-Al reactions and the most Al-rich phases on the phase diagrams (except for VA13). It was found for the growth of VA13, Co2Al9, CrAl7, and MoAl12 that Al is the dominant moving species. This is very different from results with metal-Si marker experiments where either the metal or Si can be the dominant moving species in the initial phase. In aluminides the dominant moving species is related to the initial phase formed. For the growth of the Ni-rich phase, Ni3Al, Ni was the dominant moving species.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Tu, K. N. and Mayer, J. W., in Thin Films—Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley-Iilterscience, New York, 1978), p. 382.Google Scholar
2Nicolet, M.-A. and Laii, S. S:, in VLSI Electronics Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic, New York, 1983), Vol. 6, p. 358.Google Scholar
3Tardy, J. and Tu, K. N., Phys. Rev. B 32, 2070 (1985).Google Scholar
4Colgan, E. G. and Mayer, J. W., Nucl. Instrum. Methods B 17, 242 (1986).Google Scholar
5Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985).Google Scholar
6Ziegler, J. F., Biersack, J. P., and Littmark, U., “Empirical Stopping Powers for Ions in Solids,” IBM Research Report No. RC9250, 1982.Google Scholar
7Villars, P. and Calvert, L. D., in Pearson's Handbook of Crystallo-graphic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).Google Scholar
8Elliot, R. P., in Constitution of Binary Alloys, First Supplement, (McGraw-Hill, New York, 1965).Google Scholar
9Colgan, E. G. and Mayer, J. W. (unreported results).Google Scholar
10Castleman, L. S. and Seigle, L. L., Trans. Metall. Soc. TMS AIME 212, 589 (1958).Google Scholar
11Janssen, M. M. P. and Rieck, G. D., Trans. Metall. Soc. TMS AIME 239, 1372 (1967).Google Scholar
12Shankar, S. and Seigle, L. L., Metall. Trans. A 9, 1467 (1978).CrossRefGoogle Scholar
13Glitz, R., Notis, M. R., and Goldstein, J. I., Metall. Trans. A13, 1921 (1982).Google Scholar
14van Loo, F. J. J. and Rieck, G. D., Acta Metall. 21, 61 (1973).Google Scholar
15van Loo, F. J. J. and Rieck, G. D., Acta Metall. 21, 73 (1973).Google Scholar
16Ouchi, K.-i., Iijima, Y., and Hirano, K.-i., in Titanium ‘80, edited by Kimura, H. and Izumi, O. (The Metallurgical Society of AIME, Warrendale, PA, 1980), p. 559.Google Scholar
17Kidson, G. V. and Miller, G. D., J. Nucl. Mater. 12, 61 (1964).Google Scholar
18Tiwari, G. P. and Sharma, B. D., Nature 204, 178 (1964).Google Scholar
19Maas, J., Bastin, G., van Loo, F., and Metselaar, R., Z. Metallkd. 74, 294 (1983).Google Scholar
20Colgan, E. G. and Mayer, J. W., in Thin Films—Interfaces and Phenomena, edited by Nemanich, R. J., Ho, P. S., and Lau, S. S. (North-Holland, New York, 1986), p. 121.Google Scholar
21Jackson, M. S. and Li, C.-Y., Acta Metall. 30, 1993 (1982).Google Scholar