Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:25:27.726Z Has data issue: false hasContentIssue false

Diffusion model for the crystal growth of Pr1+xBa2−xCu3O7–δ by the top seeded crystal pulling method

Published online by Cambridge University Press:  31 January 2011

Minoru Tagami
Affiliation:
SRL-ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
Takateru Umeda
Affiliation:
Department of Metallurgy, School of Engineering, The University of Tokyo, 7–3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Yuh Shiohara
Affiliation:
SRL-ISTEC, 1–10–13 Shinonome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

A solidification model for Pr1+xBa2−xCu3O7−δ ternary oxides by the top seeded crystal pulling (SRL–CP: Solute Rich Liquid–Crystal Pulling) method is presented in which the composition of the grown single crystals is estimated from the starting composition in the crucible. This model involves the diffusion flux balance of each element at the growth interface in the liquid considering equilibrium tie-lines in the PrOy–BaO–CuO ternary phase diagram which have been obtained experimentally. The self-diffusion coefficient for Pr and the interdiffusivities for Ba and Cu in the liquid are used in this model because this liquid is a dilute solution for Pr. The calculated results are in good agreement with the experimental ones.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Soderholm, L., Zhang, K., Hinks, D. G., Beno, M. A., Jorgensen, J. D., Segre, C. U., and Ivan Schuller, K., Nature 328, 604605 (1987).CrossRefGoogle Scholar
2.Goncalves, A. P., Santos, I. C., Lopes, E. B., Henriques, R. T., Almeida, M., and Figueiredo, M. O., Phys. Rev. B 37, 74767481 (1988).CrossRefGoogle Scholar
3.Kinoshita, K., Matsuda, A., Shibata, H., Ishii, T., Watanabe, T., and Yamada, T., Jpn. J. Appl. Phys. 27, L1642–L1645 (1988).CrossRefGoogle Scholar
4.Matsuda, A., Kinoshita, K., Ishii, T., Shibata, H., Watanabe, T., and Yamada, T., Phys. Rev. B 38, 29102913 (1988).CrossRefGoogle Scholar
5.Neukirch, U., Simmons, C. T., Sladeczek, P., Laubschat, C., Strebel, O., Kaindel, G., and Sarma, D. D., Europhys. Lett. 5, 567571 (1988).CrossRefGoogle Scholar
6.Zou, Z., Oka, K., Ito, T., and Nishihara, Y., Proc. of the 9th Int. Symp. on Supercond. (ISS'96), in press.Google Scholar
7.Blacksteed, H. A., Chrisey, D. B., John Dow, D., Horwitz, J. S., Klunzinger, A. E., and Pulling, D. B., Physica C235–240, 15391540 (1994).CrossRefGoogle Scholar
8.Tagami, M. and Shiohara, Y., J. Cryst. Growth 171, 409414 (1997).CrossRefGoogle Scholar
9.Tagami, M., Kambara, M., Umeda, T., and Shiohara, Y., J. Mater. Res. (in press).Google Scholar
10.Yamada, Y. and Shihara, Y., Physica C217, 182188 (1993).CrossRefGoogle Scholar
11.Cochran, W. G., Proc. Cambridge Philos. Soc. 30, 365 (1934).CrossRefGoogle Scholar
12.Levich, V. G., Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ 1962), p. 60.Google Scholar