Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T14:54:21.106Z Has data issue: false hasContentIssue false

Direct observations of incipient plasticity during nanoindentation of Al

Published online by Cambridge University Press:  03 March 2011

A.M. Minor
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
E.T. Lilleodden
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
E.A. Stach
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720
J.W. Morris Jr.
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and Department of Materials Science and Engineering, University of California, Berkeley, California 94720
Get access

Abstract

The mechanical testing technique for in situ nanoindentation in a transmission electron microscope is described and is shown to provide real-time observations of the mechanisms of plastic deformation that occur during nanoindentation. Here, the importance of this technique was demonstrated on an aluminum thin film deposited on a single-crystalline silicon substrate. Significant results include direct observation of dislocation nucleation, characterization of the dislocation distribution created by indentation, and the observation of indentation-induced grain boundary motion. The observations achieved by this technique provide unique insight into mechanical behavior studied with conventional instrumented nanoindentation techniques and also provide microstructural-level understanding of the mechanics of ultrasmall volumes.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pethica, J.B., Hutchings, R. and Oliver, W.C., Philos. Mag. A 48 593 (1983).CrossRefGoogle Scholar
2.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
3.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P. and Wyrobek, J.T., Acta Mater. 44 3585 (1996).CrossRefGoogle Scholar
4.Gouldstone, A., Koh, H-J., Zeng, K-Y., Giannakopoulos, A.E. and Suresh, S., Acta Mater. 48 2277 (2000).CrossRefGoogle Scholar
5.Saka, H., Shimatani, A., Suganuma, M., Suprijadi, M.Philos. Mag. A 82 1971 (2002).CrossRefGoogle Scholar
6.Kiely, J.D., Jarausch, K.F., Houston, J.E. and Russell, P.E., J. Mater. Res. 14 2219 (1999).CrossRefGoogle Scholar
7.Kramer, D.E., Yoder, K.B. and Gerberich, W.W., Philos. Mag. A 81 2033 (2001).CrossRefGoogle Scholar
8.Kamada, K. and Tanner, B.K., Philos. Mag. 29 309 (1974).CrossRefGoogle Scholar
9.Lilleodden, E.T., Ph.D. Thesis, Stanford University, Palo Alto, CA (2001).Google Scholar
10.Johnson, K.L.Contact Mechanics, 2nd ed. (Cambridge University Press, Cambridge, 1987).Google Scholar
11.Hirth, J.P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1968), p. 6.Google Scholar
12.Pethica, J.B. and Oliver, W.C. in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smith, D.A. (Proc. Mater. Res. Soc. Proc. 130, Pittsburgh, PA, 1989), p. 13.Google Scholar
13.Page, T.F., Oliver, W.C. and McHargue, C.J., J. Mater. Res. 7 450 (1992).CrossRefGoogle Scholar
14.Wall, M. and Dahmen, U., Microscopy and Microanalysis 3 593 (1997).CrossRefGoogle Scholar
15.Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R.Morris, J.W. Jr.Zettl, A. and Dahmen, U., Microscopy and Microanalysis 7 (2001).Google Scholar
16.Sung, T., Popovici, G., Prelas, M.A., Wilson, R.G. and Loyalka, S.K., J. Mater. Res. 12 1169 (1997).CrossRefGoogle Scholar
17.Popovici, G., Wilson, R.G., Sung, T., Prelas, M.A. and Khasawinah, S., J. Appl. Phys. 77 5103 (1995).CrossRefGoogle Scholar
18.Minor, A.M., Stach, E.A. and Morris, J.W., Jr., Appl. Phys. Lett. 79 1625 (2001).CrossRefGoogle Scholar
19.Minor, A.M., Lilleodden, E.T., Stach, E.A. and Morris, J.W. Jr., J. Electron. Mater. 31 10958 (2002).CrossRefGoogle Scholar
20.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46 411 (1998).CrossRefGoogle Scholar
21.Fivel, M., Robertson, C.F., Canova, G.R. and Boulanger, L., Acta Mater. 46 6183 (1998).CrossRefGoogle Scholar
22.Hall, E.O., Proc. Phys. Soc. London B64 747 (1951).CrossRefGoogle Scholar
23.Petch, N.J., J. Iron Steel Inst. 174 25 (1953).Google Scholar
24.Li, J.C.M., Trans. Metall. Soc. AIME 227 239 (1963).Google Scholar
25.Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M. and Nix, W.D., J. Mech. Phys. Solids in press, 2002Google Scholar
26.Gruen, D., Annu. Rev. Mater. Sci. 29 211 (1999).CrossRefGoogle Scholar
27.Langdon, T., Mater. Sci. Eng. A 137 1 (1992).CrossRefGoogle Scholar
28.Langdon, T., Met. Trans. A B13A 689 (1982).CrossRefGoogle Scholar
29.Winning, M., Gottstein, G. and Shvindlerman, L.S., Acta Mater. 49 211 (2001).CrossRefGoogle Scholar
30.Merkle, K.L. and Thompson, L.J., Mater. Lett. 48 188, (2001).CrossRefGoogle Scholar