Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T21:25:48.334Z Has data issue: false hasContentIssue false

Direct synthesis of tin oxide nanotubes on microhotplates using carbon nanotubes as templates

Published online by Cambridge University Press:  11 January 2011

Prahalad Parthangal
Affiliation:
Departments of Mechanical Engineering and Chemistry, University of Maryland, College Park, Maryland 20742; and Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Richard E. Cavicchi*
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Douglas C. Meier
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Andrew Herzing
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Michael R. Zachariah
Affiliation:
Departments of Mechanical Engineering and Chemistry, University of Maryland, College Park, Maryland 20742; and Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Address all correspondence to this author. e-mail: rcavicchi@nist.gov
Get access

Abstract

Tin oxide (SnO2) nanotubes have been synthesized using carbon nanotubes (CNTs) as removable templates. The entire synthesis takes place on the microscale on a micromachined hotplate, without the use of photolithography, taking advantage of the device’s built-in heater. Well-aligned multiwalled CNT forests were grown directly on microhotplates at 600 °C using a bimetallic iron/alumina composite catalyst and acetylene as precursor. Thin films of anhydrous SnO2 were then deposited onto the CNT forests through chemical vapor deposition of tin nitrate at 375 °C. The CNTs were then removed through a simple anneal process in air at temperatures above 450 °C, resulting in SnO2 nanotubes. Gas sensing measurements indicated a substantial improvement in sensitivity to trace concentrations of methanol from the SnO2 nanotubes in comparison with a SnO2 thin film. The synthesis technique is generic and may be used to create any metal oxide nanotube structure directly on microscale substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Suehle, J., Cavicchi, R.E., Gaitan, M., and Semancik, S.: Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. IEEE Electron Device Lett. 14, 118 (1993).CrossRefGoogle Scholar
2.Weisz, P.B.: Effects of electronic change transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 21, 1531 (1953).CrossRefGoogle Scholar
3.McAleer, J.F., Moseley, P.T., Noris, J.O.W., Williams, D.E., and Tofield, B.C.: Tin dioxide gas sensors. Part 1: Aspects of the surface chemistry revealed by electrical conductance variations. J. Chem. Soc., Faraday Trans. 1 F 83, 1323 (1987).CrossRefGoogle Scholar
4.Moseley, P.T.: Solid state gas sensors. Meas. Sci. Technol. 8, 223 (1997).CrossRefGoogle Scholar
5.Chung, W.Y., Lim, J.W., Lee, D.D., Miura, N., and Yamazoe, N.: Thermal and gas-sensing properties of planar-type micro gas sensor. Sens. Actuators, B 64, 118 (2000).CrossRefGoogle Scholar
6.Ogawa, H., Nishikawa, M., and Abe, A.: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).CrossRefGoogle Scholar
7.Kolmakov, A., Chang, Y., Cheng, G., and Moskovits, M.: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).CrossRefGoogle Scholar
8.Parthangal, P.M., Cavicchi, R.E., Montgomery, C.B., Turner, S., and Zachariah, M.R.: Restructuring tungsten thin films into nanowires and hollow square cross-section microducts. J. Mater. Res. 20, 2889 (2005).CrossRefGoogle Scholar
9.Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., Lei, B., and Zhou, C.: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919 (2004).CrossRefGoogle Scholar
10.Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V., and Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).CrossRefGoogle Scholar
11.Parthangal, P.M., Cavicchi, R.E., and Zachariah, M.R.: A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture. Nanotechnology 17, 3786 (2006).CrossRefGoogle Scholar
12.Comini, E., Faglia, G., Sberveglieri, G., Pan, Z., and Wang, Z.L.: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).CrossRefGoogle Scholar
13.Liang, Y.X., Chen, Y.J., and Wang, T.H.: Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl. Phys. Lett. 85, 666 (2004).CrossRefGoogle Scholar
14.Zhang, Y., Liu, J., He, R., Zhang, Q., Zhang, X., and Zhu, J.: Synthesis of alumina nanotubes using carbon nanotubes as templates. Chem. Phys. Lett. 360, 579 (2002).CrossRefGoogle Scholar
15.Sun, Z., Yuan, H., Liu, Z., Han, B., and Zhang, X.: A highly efficient chemical sensor material for H2S: Alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993 (2005).CrossRefGoogle Scholar
16.Rao, C.N.R., Satishkumar, B.C., and Govindaraj, A.: Zirconia nanotubes. Chem. Commun. (Camb.) 16, 1581 (1997).CrossRefGoogle Scholar
17.Satishkumar, B.C., Govindaraj, A., Vogl, E.M., Basumallick, L., and Rao, C.N.R.: Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 12, 604 (1997).CrossRefGoogle Scholar
18.Han, W.Q. and Zettl, A.: Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3, 681 (2003).CrossRefGoogle Scholar
19.Fu, L., Liu, Z., Liu, Y., Han, B., Wang, J., Hu, P., Cao, L., and Zhu, D.: Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv. Mater. 16, 350 (2004).CrossRefGoogle Scholar
20.Min, Y.S., Bae, E.J., Jeong, K.S., Cho, Y.J., Lee, J.H., Choi, W.B., and Park, G.S.: Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv. Mater. 15, 1019 (2003).CrossRefGoogle Scholar
21.Gomathi, A., Vivekchand, S.R.C., Govindaraj, A., and Rao, C.N.R.: Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires. Adv. Mater. 17, 2757 (2005).CrossRefGoogle Scholar
22.Hoa, N.D., Van Quy, N., Song, H., Kang, Y., Cho, Y., and Kim, D.: Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes. J. Cryst. Growth 311, 657 (2009).CrossRefGoogle Scholar
23.Jia, Y., He, L., Guo, Z., Chen, X., Meng, F., Luo, T., Li, M., and Liu, J.: Preparation of porous tin oxide nanotubes using carbon nanotubes as templates and their gas-sensing properties. J. Phys. Chem. C 113(22), 9581 (2009).CrossRefGoogle Scholar
24.Parthangal, P.M., Cavicchi, R.E., and Zachariah, M.R.: A generic process of growing aligned carbon nanotube arrays on metals and metal alloys. Nanotechnology 18, 185605 (2007).CrossRefGoogle Scholar
25.Cavicchi, R.E., Semancik, S., DiMeo, F., and Taylor, C.J.: Featured article: Use of microhotplates in the controlled growth characterization of metal oxides for chemical sensing. J. Electroceram. 9, 155 (2003).CrossRefGoogle Scholar
26.Gajdosik, L.: The derivation of the electrical conductance/concentration dependency for SnO2 gas sensor for ethanol. Sens. Actuators, B 81, 347 (2002).CrossRefGoogle Scholar
27.Kolmakov, A.: Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors. Int. J. Nanotechnol. 5(4/5), 450 (2008).CrossRefGoogle Scholar
28.Woodruff, D.P. and Delchar, T.A.: Modern Techniques of Surface Science, 2nd ed. (Cambridge University Press, Cambridge, UK, 1994), p. 108.CrossRefGoogle Scholar
29.Choi, W.K., Jung, H.J., and Koh, S-K.J.: Chemical shifts and optical properties of tin oxide films grown by a reactive ion-assisted deposition. J. Vac. Sci. Technol., A 14, 359 (1996).CrossRefGoogle Scholar
30.Childs, K.D., Carlson, B.A., LaVanier, L.A., Moulder, J.F., Paul, D.F., Stickle, W.F., and Watson, D.G.: Handbook of Auger Electron Spectroscopy, 3rd ed., edited by Hedberg, C. (Physical Electronics, Inc., Eden Prairie, MN, 1995), p. 404.Google Scholar
31.Sahma, T., Mädler, L., Gurlo, A., Barsan, N., Pratsinis, S.E., and Weimar, U.: Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens. Actuators, B 98, 148 (2004).CrossRefGoogle Scholar
32.Nayral, C., Viala, E., Fau, P., Senocq, F., Jumas, J.C., and Maisonnat, A.: Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing. Chemistry 6, 4082 (2000).3.0.CO;2-S>CrossRefGoogle ScholarPubMed
33.Lei, W., Jun, D., Mao, C.H., Xiong, Y.H., and Yang, Z.M.: Enhancement of hydrogen gas-sensing properties of SnO2-based thin film with Ni surface modification, in Proceedings of the 7th International Conference on Electronic Measurement and Instruments, Vol. 5, edited by Qi, J.M. and Cui, J.P. (International Academic Publishers LTD, Hong Kong, China, 2005), p. 531.Google Scholar
34.Chakraborty, S., Sen, A., and Maiti, H.S.: Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors. Sens. Actuators, B 115, 610 (2006).CrossRefGoogle Scholar
35.Mandayo, G.G., Castano, E., Gracia, F.J., Cirera, A., Cornet, A., and Morante, J.R.: Enhancement of hydrogen gas-sensing properties of SnO2-based thin film with Ni surface modification. Sens. Actuators, B 95, 90 (2003).CrossRefGoogle Scholar
36.Niranjan, R.S., Sainkar, S.R., Vijayamohanan, K., and Mulla, I.S.: Ruthenium: Tin oxide thin film as a highly selective hydrocarbon sensor. Sens. Actuators, B 82, 82 (2002).CrossRefGoogle Scholar
37.Tiffany, J., Cavicchi, R.E., and Semancik, S.: Microarray study of temperature dependent sensitivity and selectivity of metal/oxide sensing interfaces, in Advanced Environmental and Chemical Sensing Technology, Vol. 4205, edited by VoDinh, T. and Buttgenbach, S. (SPIE-International Society for Optical Engineering, Bellingham, WA, 2001), p. 240.CrossRefGoogle Scholar
38.Kim, J.C., Jun, H.K., Huh, J.S., and Lee, D.D.: Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens. Actuators, B 45, 271 (1997).CrossRefGoogle Scholar
39.Cane, C., Gracia, I., Gotz, A., Fonseca, L., Lora-Tamayo, E., Horrillo, M.C., Sayago, I., Robla, J.I., Rodrigo, J., and Gutierrez, J.: Detection of gases with arrays of micromachined tin oxide gas sensors. Sens. Actuators, B 65, 244 (2000).CrossRefGoogle Scholar
40.Dable, B.K., Booksh, K.S., Cavicchi, R.E., and Semancik, S.: Calibration of microhotplate conductometric gas sensors by non-linear multivariate regression methods. Sens. Actuators, B 101, 284 (2004).CrossRefGoogle Scholar
41.Cavicchi, R.E., Suehle, J.S., Kreider, K.G., Gaitan, M., and Chaparala, P.: Fast temperature programmed sensing for micro-hotplate gas sensors. IEEE Electron Device Lett. 16, 286 (1995).CrossRefGoogle Scholar