Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T07:01:22.486Z Has data issue: false hasContentIssue false

Dislocations in plastically deformed L12 compounds based on Al3Ti

Published online by Cambridge University Press:  31 January 2011

D.G. Morris
Affiliation:
Institute of Structural Metallurgy, University of Neuchatel, 2000 Neuchatel, Switzerland
Get access

Abstract

The fine structure of dislocations in lightly deformed samples of several cubic ordered alloys with composition based on Al3Ti has been examined by weak beam electron microscopy. For all the materials examined the dislocations tend to dissociate into two 1/2(110) partials separated by APB. Dislocation dissociation is not complete at very small strains and the strain required to dissociate, as well as the dissociation distance, varies from one alloy to another. Improvements in ductility achieved by alloying are directly related to the ease and extent of this dissociation.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yamaguchi, M., Umakoshi, Y., and Yamane, T., Philos. Mag. A 55, 301 (1987).Google Scholar
2.Yamaguchi, M., Umakoshi, Y., and Yamane, T., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pitsburgh, PA, 1987), p. 275.Google Scholar
3.Kumar, K. S. and Pickens, J. R., Scripta Metall. 22, 1015 (1988).Google Scholar
4.Mabuchi, H., Hirukawa, K., and Nakayama, Y., Scripta Metall. 23, 1761 (1989).CrossRefGoogle Scholar
5.Zhang, S., Nic, J. P., and Mikkola, D. E., Scripta Metall. 24, 57 (1990).CrossRefGoogle Scholar
6.Nic, J. P., Zhang, S., and Mikkola, D. E., Scripta Metall. 24, 1099 (1990).Google Scholar
7.Zhang, S., Nic, J. P., Milligan, W. W., and Mikkola, D. E., Scripta Metall. 24, 1441 (1990).CrossRefGoogle Scholar
8.Turner, C. D., Powers, W. O., and Wert, J. A., Acta Metall. 37, 2635 (1989).CrossRefGoogle Scholar
9.George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5, 1639 (1990).Google Scholar
10.Brown, S. A., Kumar, K. S., and Whittenberger, J. D., Scripta Metall. et Mater. 24, 2001 (1990).Google Scholar
11.Kumar, K. S., Brown, S. A., and Whittenberger, J. D., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 481.Google Scholar
12.Wu, Z. L., Pope, D. P., and Vitek, V., Scripta Metall. et Mater. 24, 2187 (1990).CrossRefGoogle Scholar
13.Wu, Z. L., Pope, D. P., and Vitek, V., Scripta Metall. et Mater. 24, 2191 (1990).Google Scholar
14.Morris, D. G. and Lerf, R., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 305.Google Scholar
15.Lerf, R. and Morris, D. G., to be published.Google Scholar
16.Mazdiyasni, S., Miracle, D. B., Dimiduk, D. M., Mendiratta, M. G., and Subramanian, P. R., Scripta Metall. 23, 327 (1989).Google Scholar
17.Morris, D. G., Philos. Mag. (in press).Google Scholar
18.Loretto, M. H., in Electron Beam Analysis of Materials (Chapman and Hall, London, 1984), p. 124.Google Scholar
19.DiPietro, M. S., Kumar, K. S., and Whittenberger, J. D., J. Mater. Res. 6, 530 (1991).CrossRefGoogle Scholar
20.Morinaga, M., Saito, J., Yukawa, N., and Adachi, H., Acta Metall. et Mater. 38, 25 (1990).Google Scholar