Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T19:57:53.519Z Has data issue: false hasContentIssue false

Distribution of chlorine in quartz determined by neutron beam focusing prompt gamma activation analysis and micro-x-ray fluorescence

Published online by Cambridge University Press:  03 March 2011

H. Heather Chen-Mayer
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
William J. Heward
Affiliation:
GE Global Research Center, Niskayuna, New York 12309
Rick L. Paul
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Frederic J. Klug
Affiliation:
GE Global Research Center, Niskayuna, New York 12309
Yan Gao
Affiliation:
GE Global Research Center, Niskayuna, New York 12309
Get access

Abstract

This paper describes two spatially resolved analytical techniques for chlorine distribution analysis in high-purity quartz glass. The first, prompt gamma activation analysis (PGAA), to which most of this paper is devoted, is emphasized because a new neutron focusing technique has made this study feasible. Despite the low concentration of chlorine, the neutron absorption cross section for Cl is about 200 times greater than for Si, making Cl in Si an ideal system for PGAA. The second technique described is micro-x-ray fluorescence using a laboratory-based spectrometer. The results from each technique and their ability to quantify low levels of chlorine (400–1800 μg Cl/g SiO2) are described.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Deluca, R.D., Patent, U.S. No. 3 933 454 (20 January 1976).Google Scholar
2.Aronson, B.S., Powers, D.R., and Sommer, R.G., Optical Fiber Communication, Chlorine drying of a doped deposited silica perform simultaneous to consoliodation. Topical Meeting on Optical Fiber Communication, March 6–8, 1979, Washington, D.C.Google Scholar
3.Microscopic X-Ray Fluorescence Analysis, edited by Janssens, K.H.A., Adams, F.C.V., and Rindby, A. (John Wiley & Sons Ltd., 2000).Google Scholar
4.Lindstrom, R.M., J. Res. Natl. Inst. Stand. Technol. 98, 127 (1993).CrossRefGoogle Scholar
5.Paul, R.L., Analyst 122, 35R (1997).CrossRefGoogle Scholar
6.Paul, R.L. and Lindstrom, R.M., J. Radioanal. Nucl. Chem. 243, 181 (2000).CrossRefGoogle Scholar
7.Chen, H., Mildner, D.F.R., and Xiao, Q.F., Appl. Phys. Lett. 64, 2068 (1994).CrossRefGoogle Scholar
8.Chen, H., Sharov, V.A., Mildner, D.F.R., Downing, R.G., Paul, R.L., Lindstrom, R.M., Zeissler, C.J., and Xiao, Q.F., Nucl. Instrum. Meth. B 95, 107 (1995).CrossRefGoogle Scholar
9.Kumakhov, M.A. and Sharov, V.A., Nature 357, 390 (1992); H. Chen, R.G. Downing, D.F.R. Mildner, W.M. Gibson, M.A. Kumakhov, I.Yu. Ponomarev, and M.V. Gubarev, Nature 357, 391 (1992).CrossRefGoogle Scholar
10.Chen, H.H.-Mayer, Mildner, D.F.R., Sharov, V.A., Xiao, Q.F., Cheng, Y.T., Lindstrom, R.M., and Paul, R.L., Rev. Sci. Instrum. 68, 3744 (1997).CrossRefGoogle Scholar
11.Chen, H.H.-Mayer, Mackey, E.A., Paul, R.L., and Mildner, D.F.R., J. Radioanal. Nucl. Chem. 244, 391 (2000).CrossRefGoogle Scholar
12.Prask, H.J., Rowe, J.M., Rush, J.J., and Schröder, I.G., J. Res. NIST 98, 1 (1993).CrossRefGoogle ScholarPubMed
13.Lindstrom, R.M. and Yonezawa, C., in Prompt Gamma Neutron Activation Analysis, edited by Alfassi, Z.B. and Chung, C. (CRC Press, Boca Raton, FL, 1995), p. 93.Google Scholar
14.Stone, C.A., Blackburn, D.H., Kauffman, D.A., Cranmer, D.C., and Olmez, I., Nucl. Instrum. Meth. A 349, 515 (1994).CrossRefGoogle Scholar
15.Lucas, J.-Tooth and Pyne, C., Advances in X-ray Analysis 7, 523 (1964).CrossRefGoogle Scholar
16.Criss, J.W. and Birks, L.S., Anal. Chem. 40, 1080 (1968).CrossRefGoogle Scholar
17.He, F. and Espen, P.J. Van, Anal. Chem. 63, 2237 (1991).CrossRefGoogle Scholar
18.Hermann, W., Rau, H., and Ungelenk, J., Ber. Bunsenges Phys. Chem. 89, 423 (1985).CrossRefGoogle Scholar
19.Carman, P.C., Flow of Gases Through Porous Media (Butterworth, London, U.K., 1956).Google Scholar
20.Glantshnig, A.H., Holliday, A., and Pohl, K.T. in Optical Fiber Materials and Properties, edited by Nagel, S.R., Fleming, J.W., Sigel, G.H., and Thompson, D.A. (Mater. Res. Soc. Symp. Proc. 88, Pittsburgh, PA, 1987), p. 53.Google Scholar