Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T06:11:31.616Z Has data issue: false hasContentIssue false

Dye-sensitized solar cells based on ZnO nanoneedle/TiO2 nanoparticle composite photoelectrodes with controllable weight ratio

Published online by Cambridge University Press:  30 October 2012

Lihong Qi*
Affiliation:
Department of Physics, College of Science, Harbin Engineering University, Harbin 150001, People’s Republic of China
Qingshan Wang
Affiliation:
Department of Physics, College of Science, Harbin Engineering University, Harbin 150001, People’s Republic of China
Tieshi Wang
Affiliation:
Department of Physics, College of Science, Harbin Engineering University, Harbin 150001, People’s Republic of China
Chunyan Li
Affiliation:
Department of Physics, College of Science, Harbin Engineering University, Harbin 150001, People’s Republic of China
Qiuyun Ouyang
Affiliation:
Department of Physics, College of Science, Harbin Engineering University, Harbin 150001, People’s Republic of China
Yujin Chen
Affiliation:
Department of Physics, College of Science, Harbin Engineering University, Harbin 150001, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: lihongqi@hrbeu.edu.cn
Get access

Abstract

To possess the merits of both building blocks, i.e., the rapid interfacial electron transport of ZnO nanoneedles (NNs) and the high surface area of TiO2 nanoparticles (NPs), the ZnO NN and TiO2 NP composite photoelectrodes were prepared with controllable weight ratio. The dye-sensitized solar cell (DSSC) prototypes were fabricated based on this composite photoelectrodes, and the photoelectrical properties have been systematically studied. The results indicate that the composite cells achieve higher power conversion efficiency compared to pure TiO2 NP cells by rational tuning the weight ratio of ZnO NNs and TiO2NPs. The DSSC with 1 wt% ZnO NNs yields the highest η of 5.16%. It is elucidated by the interfacial electron transfer of DSSC with different weight of ZnO NNs using the electrochemical impedance spectra. And it is found that the DSSC with 1 wt% ZnO NNs displays the fastest interfacial electron transfer.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O’Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
Hagfeldt, A. and Grätzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).CrossRefGoogle Scholar
Nazeeruddin, M.K., Kay, A., Rodicicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., and Grätzel, M.: Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(Π) charge-transfer sensitizers (X = C1, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382 (1993).CrossRefGoogle Scholar
Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009).CrossRefGoogle ScholarPubMed
Haque, S.A., Palomares, E., Cho, B.M., Green, A.N.M., Hirata, N., Klug, D.R., and Durrant, J.R.: Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: The minimization of kinetic redundancy. J. Am. Chem. Soc. 127, 3456 (2005).CrossRefGoogle ScholarPubMed
Martinson, A.B.F., Hamann, T.W., Pellin, M.J., and Hupp, J.T.: New architectures for dye-sensitized solar cells. Chem. Eur. J. 14, 4458 (2008).CrossRefGoogle ScholarPubMed
Huang, S.Y., Schlichthörl, G., Nozik, A.J., Grätzel, M., and Frank, A.J.: Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576 (1997).CrossRefGoogle Scholar
Qin, H., Wenger, S., Xu, M., Gao, F., Jing, X., Wang, P., Zakeeruddin, S.M., and Grätzel, M.: An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J. Am. Chem. Soc. 130, 9202 (2008).CrossRefGoogle ScholarPubMed
Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol., C 4, 145 (2003).CrossRefGoogle Scholar
Peter, L.M.: Characterization and modeling of dye-sensitized solar cells. J. Phys. Chem. C 111, 6601 (2007).CrossRefGoogle Scholar
Sodergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S.E.: Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 98, 5552 (1994).CrossRefGoogle Scholar
O’Regan, B.C., Bakker, K., Kroeze, J., Smit, H., Sommeling, P., and Durrant, J.R.: Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films. J. Phys. Chem. B 110, 17155 (2006).CrossRefGoogle ScholarPubMed
Baxter, J.B. and Aydil, E.S.: Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).CrossRefGoogle Scholar
Kang, T.S., Smith, A.P., Taylor, B.E., and Durstock, M.F.: Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 9, 601 (2009).CrossRefGoogle ScholarPubMed
De Marco, L., Manca, M., Giannuzzi, R., Malara, F., Melcarne, G., Ciccarella, G., Zama, I., Cingolani, R., and Gigli, G.: Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114, 4228 (2010).CrossRefGoogle Scholar
Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).CrossRefGoogle ScholarPubMed
Ho, S.T., Hsiao, C.L., Lin, H.Y., Chen, H.A., Wang, C.Y., and Lin, H.N.: Single-crystalline zinc oxide nanowires as photoanode material for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 6473 (2010).CrossRefGoogle ScholarPubMed
Law, M., Greene, L.E., Radenovic, A., Kuykendall, T., Liphardt, J., and Yang, P.: ZnO−Al2O3 and ZnO−TiO2 core−shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).CrossRefGoogle ScholarPubMed
Cheng, H.M., Chiu, W.H., Lee, C.H., Tsai, S.Y., and Hsieh, W.F.: Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C 112, 16359 (2008).CrossRefGoogle Scholar
Lei, Y., Zhao, G., Liu, M., Zhang, Z., Tong, X., and Cao, T.: Fabrication, characterization and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes. J. Phys. Chem. C 113, 19067 (2009).CrossRefGoogle Scholar
Tan, B. and Wu, Y.: Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932 (2006).CrossRefGoogle ScholarPubMed
Pang, S., Xie, T., Zhang, Y., Wei, X., Yang, M., Wang, D., and Du, Z.: Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells. J. Phys. Chem. C 111, 18417 (2007).CrossRefGoogle Scholar
Chen, W., Qiu, Y.C., and Yang, S.H.: A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys. Chem.Chem. Phys. 12, 9494 (2010).CrossRefGoogle ScholarPubMed
Liu, Z., Pan, K., Zhang, Q., Jia, R., Lv, Q., Wang, D., Bai, Y., and Li, T.: The performances of the mercurochrome-sensitized composite semiconductor photoelectrochemical cells based on TiO2/SnO2 and ZnO/SnO2 composites. Thin Solid Films 468, 291 (2004).CrossRefGoogle Scholar
Hagfeldt, A. and Grätzel, M.: Molecular photovoltaics. Acc. Chem. Res. 33, 269 (2000).CrossRefGoogle ScholarPubMed
Yanagida, M., Yamaguchi, T., Kurashige, M., Hara, K., Katoh, R., Sugihara, H., and Arakawa, H.: Panchromatic sensitization of nanocrystalline TiO2 with cis-bis(4-carboxy-2-[2′-(4′-carboxypyridyl)]quinoline)bis(thiocyanato-N)rutheni-um(II). Inorg. Chem. 42, 7921 (2003).CrossRefGoogle Scholar
Fabregat-Santiago, F., Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeeruddin, S.M., and Grätzel, M.: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111, 6550 (2007).CrossRefGoogle Scholar
Longo, C., Nogueira, A.F., De Paoli, M.A., and Cachet, H.: Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy. J. Phys. Chem. B 106, 5925 (2002).CrossRefGoogle Scholar
Qu, J., Gao, X.P., Li, G.R., Jiang, Q.W., and Yan, T.Y.: Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanate nanotubes. J. Phys. Chem. C 113, 3359 (2009).CrossRefGoogle Scholar