Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T14:54:56.957Z Has data issue: false hasContentIssue false

Effect of additions of metal submicron particles on properties of alumina matrix composites

Published online by Cambridge University Press:  04 June 2019

Enrique Rocha-Rangel*
Affiliation:
Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas 87138, México
Juan López-Hernández
Affiliation:
Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas 87138, México
Carlos A. Calles-Arriaga
Affiliation:
Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas 87138, México
Wilian J. Pech-Rodríguez
Affiliation:
Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas 87138, México
Eddie N. Armendáriz-Mireles
Affiliation:
Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas 87138, México
José A. Castillo-Robles
Affiliation:
Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas 87138, México
José A. Rodríguez-García
Affiliation:
Universidad Politécnica de Victoria, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas 87138, México
*
a)Address all correspondence to this author. e-mail: erochar@upv.edu.mx
Get access

Abstract

Ceramic–metal composites are an important group of materials that have gained interest recently because of their peculiar properties. There have been numerous studies on the reinforcement of alumina through the incorporation of various ductile metals in it. However, these studies have been limited to determining the effect of the addition of metals on the mechanical properties of ceramics, without determining the effect of these metal additions on other physical properties of the resulting composite. In this way, in agreement with the obtained results, we have that because of the conductive nature of metals, there is a considerable decrease in the electrical resistivity of alumina, mainly when copper is added to it. However, in terms of optical performance, alumina matrix composites showed significant changes in absorbance in the visible spectra. The addition of iron, titanium, and yttrium enhanced the absorbance of alumina, whereas manganese addition significantly decreased the optical absorption.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ighodaro, O.L. and Okoli, O.I.: Fracture toughness enhancement for alumina systems: A review. Int. J. Appl. Ceram. Technol. 5, 3 (2008).10.1111/j.1744-7402.2008.02224.xCrossRefGoogle Scholar
Konopka, K.: Alumina composites with metal particles in ceramic matrix. Powder Metall. Met. Ceram. 54, 374379 (2015).10.1007/s11106-015-9724-5CrossRefGoogle Scholar
Asthana, R., Mrityunjay, S., and Sobczak, N.: Infiltration processing of ceramic–metal composites: The role of wettability, reaction, and capillary flow. J. Korean Ceram. Soc. 42, 11 (2005).10.4191/KCERS.2005.42.11.703CrossRefGoogle Scholar
Travitzky, N.: Processing of ceramic–metal composites. Adv. Appl. Ceram. 111, 56 (2012).10.1179/1743676111Y.0000000073CrossRefGoogle Scholar
Moreno, R.: Colloidal processing of ceramic–ceramic and ceramic–metal composites. In Processing and Properties of Advanced Ceramics and Composites III, Bansal, N.P., Singh, J.P., Lamon, J., and Choi, S.R., eds. (2010 Materials Science and Technology meeting, Houston, Texas, 2010); p. 145.Google Scholar
Govindaraju, M., Balasubramanian, K., Chakkingal, U., and Prasad Rao, K.: Making ceramic–metal composite material by friction stir processing. IOP Conf. Ser.: Mater. Sci. Eng. 73, 1 (2015).10.1088/1757-899X/73/1/012064CrossRefGoogle Scholar
Binner, J., Chang, H., and Higginson, R.: Processing of ceramic–metal interpenetrating composites alumina/Al–Mg alloys. J. Eur. Ceram. Soc. 29, 5 (2009).10.1016/j.jeurceramsoc.2008.07.034CrossRefGoogle Scholar
Auger, J-M., Saunier, S., and Valdivieso, F.: Characterisation of sintering of alumina matrix–stainless steel dispersion composite and interaction between chromium, carbon and alumina during powder metallurgy process. Powder Metall. 53, 1 (2011).Google Scholar
Szafran, M., Konopka, K., Bobryk, E., and Kurzydłowski, K.J.: Ceramic matrix composites with gradient concentration of metal particles. J. Eur. Ceram. Soc. 27, 23 (2007).10.1016/j.jeurceramsoc.2006.04.046CrossRefGoogle Scholar
Liu, C., Zhang, J., Sun, J., and Zhang, X.: Addition of Al–Ti–B master alloys to improve the performances of alumina matrix ceramic materials. Ceram. Int. 33, 7 (2007).Google Scholar
Sbaizero, O. and Pezzott, G.: Influence of the metal particle size on toughness of Al2O3/Mo composite. Acta Mater. 48, 4 (2000).10.1016/S1359-6454(99)00349-3CrossRefGoogle Scholar
Agrawal, P. and Sun, C.T.: Fracture in metal–ceramic composites. Compos. Sci. Technol. 64, 9 (2004).10.1016/j.compscitech.2003.09.026CrossRefGoogle Scholar
Marci, C. and Katarzyna, P.: Processing, microstructure and mechanical properties of Al2O3–Cr nanocomposite. J. Eur. Ceram. Soc. 27, 23 (2007).Google Scholar
Rapid Ceramic–Metal Processing for Superior Composites (Texas A&M University, 2017). Available at https://phys.org/news/2017-01-rapid-ceramic-metal-superior-composites.html (accesed February 16, 2019).Google Scholar
Yangaiu, L., Zhaohui, H., and Minghao, F.: Microstructure and properties of Al2O3 ceramic composite toughened by different grain sizes of LiTaO3. In Processing and Properties of Advanced Ceramics and Composites IV, Singh, J.P., Bansal, N.P., Goto, T., Lamon, J., Choi, S.R., Mahmound, M.M., and Link, G., eds.; Ceramic Transactions, Vol. 234 (Materials Science & Technology Conference & Exhibition, Columbus, Ohio, 2011); pp. 275–278.Google Scholar
Vahed, N., and Kammler, M.: Functional sintered parts with inherently stored information and integrated loading monitoring. In Processing and Properties of Advanced Ceramics and Composites V, Singh, J.P., Bansal, N.P., Ko, S.W., Castro, R.H., Pickrell, G., Manjooran, J., M Nair, K., and Singh, G., eds.; Ceramic Transactions, Vol. 240 (Materials Science & Technology Conference & Exhibition, Pittsburgh, Pennsylvania, 2012); pp. 834–841.Google Scholar
Xiao-Shan, N., Shai, L., Bo, W., Guocai, L., Na, B., and Yang, L.: A novel dip coating method for reaction bonding of aluminum on alumina. In Processing and Properties of Advanced Ceramics and Composites VI, Singh, J.P., Bansal, N.P., Bhalia, A.S., Mahmound, M.M., Manjooran, N., Singh, G., Lamon, J., Choi, S.R., Pickrell, G., Lu, K., Brennecka, G., and Goto, T., eds.; Ceramic Transactions, Vol. 249 (Materials Science & Technology Conference & Exhibition, Montreal, QC, 2013); pp. 93–103.Google Scholar
Wessel, J.K.: The Handbook of Advanced Materials. (John Wiley & Sons Inc, New York, 2004); p. 65.10.1002/0471465186CrossRefGoogle Scholar
Miyoshi, T., Sagawa, N., and Sassa, T.: Study on fracture toughness evaluation for structural ceramics. T. Jpn. Soc. Mech. Eng. Ser. A 51, 471 (1985).Google Scholar
Moulson, X.A. and Herbert, A.: Electroceramics: Materials, Properties, Applications, 2nd ed. (Wiley, New York, 2003).10.1002/0470867965CrossRefGoogle Scholar
Li, J., Cho, K., Wu, N., and Ignatiev, A.: Correlation between dielectric properties and sintering temperatures of polycrystalline CaCu3Ti4O12. IEEE Trans. Dielectr. Electr. Insul. 11, 3 (2004).Google Scholar
Hong-Liang, L., Yu-Zhu, G., Yuan, Z., Xin-Yan, L., Peng-Fei, W., Qing-Qing, S., Shi-Jin, D., and Wei-Zhang, D.: Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al2O3 buffer layer. Opt. Express 22, 18 (2014).Google Scholar
Baba, T.: Focusing property of the Au–Al2O3–Ag plasmonic metawaveguide with two-dimensional periodic stub resonators. J. Opt. Soc. Am. B 30, 4 (2013).10.1364/JOSAB.30.000967CrossRefGoogle Scholar
Yu, Y., Yajie, W., Yabin, C., Si, C., Qinling, Z., Wei, C., and Lili, H.: Effect of Al2O3 on structure and properties of Al2O3–K2O–P2O5 glasses. Opt. Mater. Express 8, 2 (2018).Google Scholar
ASTM: Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. C20-00 (2010).Google Scholar
Shackelford, J.: Structure of materials. In Materials Science and Engineering Handbook, Shackelford, J.F. and Alexander, W., eds. (CRC Press, Boca Raton, Florida, 2001); p. 103.Google Scholar
ASTM standard test method for dynamic Young’s modulus, Shear modulus, and Poisson’s ratio for advanced ceramics by sonic resonance. C1198-09 (2013).Google Scholar
ASTM standard test method for Vickers indentation hardness of advanced ceramics. C1327 (2015).Google Scholar
Hart, B.L.: D.C.-parameter characterization of the early effect in bipolar junction transistors. Radio Electron. Eng. 50, 12 (1980).10.1049/ree.1980.0008CrossRefGoogle Scholar