Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T06:58:41.019Z Has data issue: false hasContentIssue false

Effect of (Bi0.5K0.5)TiO3 on the electrical properties, thermal and fatigue behavior of (K0.5Na0.5)NbO3-based lead-free piezoelectrics

Published online by Cambridge University Press:  23 June 2015

Jigong Hao
Affiliation:
College of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
Zhijun Xu*
Affiliation:
College of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
Ruiqing Chu
Affiliation:
College of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
Wei Li
Affiliation:
College of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
Juan Du
Affiliation:
College of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong Province 252059, People's Republic of China
*
a)Address all correspondence to this author. e-mail: zhjxu@lcu.edu.cn
Get access

Abstract

The (1 − x)[0.94(K0.5Na0.5)NbO3–0.06LiNbO3]–x(Bi0.5K0.5)TiO3 (abbreviated as: KNLN6–xBKT, x = 0–0.05) lead-free piezoelectric ceramics were prepared using conventional solid sintering method. The effects of BKT on the phase structure, electrical properties, temperature stability, and fatigue behavior of KNLN6 ceramics were systematically studied. Results show that BKT substitution into KNLN6 induces a phase transition from coexistence of orthorhombic and tetragonal phases to a single tetragonal phase with a normal-relaxor ferroelectric transformation and correspondingly shifts the polymorphic phase transition below room temperature. Accordingly, the temperature stability of the properties is significantly improved, and a flat, temperature stable behavior over the temperature range of 25–150 °C is observed in BKT-modified ceramics. Temperature-dependent structural analysis suggests that the good properties insensitive to temperature of the modified samples can be ascribed to the stable tetragonal phase over a wide temperature range, evident by the almost unchanged tetragonality c/a ratio with temperature. Moreover, the BKT-modified ceramics not only exhibit temperature-independent characteristic but also possess fatigue-free behavior. All the electric parameters, including unipolar/bipolar strain S, remnant polarization Pr, permittivity εr, and large signal d33*, display no degradation up to 105 switching cycles. The exceptionally good fatigue resistance and temperature stable behavior make the modified KNN-based materials excellent candidates for lead-free actuators and transducers.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, J.F., Wang, K., Zhu, F.Y., Cheng, L.Q., and Yao, F.Z.: (K, Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013).CrossRefGoogle Scholar
Liu, W. and Ren, X.: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle ScholarPubMed
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).CrossRefGoogle ScholarPubMed
Wang, X.P., Wu, J.G., Xiao, D.Q., Zhu, J.G., Cheng, X.J., Zheng, T., Zhang, B.Y., Lou, X.J., and Wang, X.Q.: Giant piezoelectricity in potassium−sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136, 2905 (2014).CrossRefGoogle ScholarPubMed
Cheng, X.J., Wu, J.G., Lou, X.J., Wang, X.J., Wang, X.P., Xiao, D.Q., and Zhu, J.G.: Achieving both giant d 33 and high T c in potassium−sodium niobate ternary system. ACS Appl. Mater. Interfaces 6, 750 (2014).CrossRefGoogle Scholar
Hollenstein, E., Davis, M., Damjanovic, D., and Setter, N.: Piezoelectric properties of Li-and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005).CrossRefGoogle Scholar
Zhang, S.J., Xia, R., and Shrout, T.R.: Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. Appl. Phys. Lett. 91, 132913 (2007).CrossRefGoogle Scholar
Lin, D.M. and Kwok, K.W.: Phase transition, dielectric and piezoelectric properties of K0.5Na0.5NbO3–CaTi0.9Zr0.1O3 lead-free ceramics. J. Mater. Sci. 47, 397 (2012).CrossRefGoogle Scholar
Fu, J., Zuo, R.Z., and Gao, X.Y.: Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Appl. Phys. Lett. 103, 182907 (2013).CrossRefGoogle Scholar
Zang, G.Z., Wang, J.F., Chen, H.C., Su, W.B., Wang, C.M., Qi, P., Ming, B.Q., Du, J., Zheng, L.M., Zhang, S.J., and Shrout, T.R.: Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl. Phys. Lett. 88, 212908 (2006).CrossRefGoogle Scholar
Du, H.L., Zhou, W.C., Luo, F., Zhu, D.M., Qu, S.B., Li, Y., and Pei, Z.B.: Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3–(Bi0.5K0.5)TiO3 lead-free ceramics. J. Phys. D: Appl. Phys. 41, 115413 (2008).CrossRefGoogle Scholar
Akdogan, E.K., Kerman, K., Abazari, M., and Safari, A.: Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92, 112908 (2008).CrossRefGoogle Scholar
Zhang, S.J., Xia, R., Hao, H., Liu, H.X., and Shrout, T.R.: Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics. Appl. Phys. Lett. 92, 152904 (2008).CrossRefGoogle ScholarPubMed
Yao, F.Z., Wang, K., and Li, J.F.: Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics. J. Appl. Phys. 113, 174105 (2013).CrossRefGoogle Scholar
Wu, J.G., Xiao, D.Q., Wang, Y.Y., Wu, W.J., Zhang, B., Li, J., and Zhu, J.G.: CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability. Scr. Mater. 59, 750 (2008).CrossRefGoogle Scholar
Skidmore, T.A., Comyn, T.P., and Milne, S.J.: Temperature stability of lead-free piezoelectric ceramics. Appl. Phys. Lett. 94, 222902 (2009).CrossRefGoogle Scholar
Hao, J.G., Xu, Z.J.. Chu, R.Q., Zhang, Y.J., Chen, Q., Li, W., Fu, P., Zang, G.Z., Li, G.R., and Yin, Q.R.: Enhanced temperature stability of (1−x)(K0.5Na0.5)0.94Li0.06NbO3-x(Bi0.5Na0.5)TiO3 lead-Free piezoelectric ceramics. J. Electron. Mater. 39, 347 (2010).CrossRefGoogle Scholar
Lupascu, D.C. and Rödel, J.: Fatigue in bulk lead zirconate titanate actuator materials. Adv. Eng. Mater. 7, 882 (2005).CrossRefGoogle Scholar
Hiruma, Y., Aoyagi, R., Nagata, H., and Takenaka, T.: Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. J. Appl. Phys. 44, 5040 (2005).CrossRefGoogle Scholar
Hao, J.G., Bai, W.F., and Shen, B., Zhai, J.W.: Improved piezoelectric properties of (KxNa1−x)0.94Li0.06NbO3 lead-free ceramics fabricated by combining two-step sintering. J. Alloys. Compd. 534, 13 (2012).CrossRefGoogle Scholar
Cheng, X.J., Wu, J.G., Wang, X.P., Zhang, B.Y., Zhu, J.G., Xiao, D.Q., Wang, X.J., Lou, X.J., and Liang, W.F.: Lead-free piezoelectric ceramics based on (0.97-x)K0.48Na0.52NbO3-0.03Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3-xBi0.5Na0.5TiO3 ternary system. J. Appl. Phys. 114, 124107 (2013).CrossRefGoogle Scholar
Nakamura, E., Mitsui, T., and Furuichi, J.: A note on the classification of ferroelectric. J. Phys. Soc. Jpn. 18, 1477 (1963).CrossRefGoogle Scholar
Uchino, K. and Nomura, S.: Critical exponents of the dielectric constants in diffused phase transition crystals. Ferroelectr., Lett. Sect. 44, 55 (1982).CrossRefGoogle Scholar
Guo, Y., Kakimoto, K., and Ohsato, H.: Ferroelectric-relaxor behavior of (Na0.5K0.5)NbO3-based ceramics. J. Phys. Chem. Solids 65, 1831 (2004).CrossRefGoogle Scholar
Irvine, J.T.S., Sinclair, D.C., and West, A.R.: Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 2, 132 (1990).CrossRefGoogle Scholar
Atamanik, E. and Thangadurai, V.: Study of the dielectric properties in the NaNbO3–KNbO3–In2O3 system using AC impedance spectroscopy. Mater. Res. Bull. 44, 931 (2009).CrossRefGoogle Scholar
Boukriba, M., Sediri, F., and Gharbi, N.: Hydrothermal synthesis and electrical properties of NaNbO3. Mater. Res. Bull. 48, 574 (2013).CrossRefGoogle Scholar
Cheng, J.R., Shi, G.Y., Qi, Y.F., Chen, J.G., and Yu, S.W.: Impendence spectroscopy study of high temperature BiFeO3-PbTiO3 based ceramics. J. Shanghai Univ. (Nat. Sci.) 17, 535 (2011).Google Scholar
Li, T.Y., Fan, H.Q., Long, C.B., Dong, G.Z., and Sun, S.J.: Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates. J. Alloys Compd. 609, 60 (2014).CrossRefGoogle Scholar
Zhang, H.T., Yan, H.X., and Reece, M.J.: The effect of Nd doping on the properties of Bi3NbTiO9 ceramics. J. Appl. Phys. 106, 044106 (2009).CrossRefGoogle Scholar
Viola, G., Saunders, T., Wei, X., Chong, K.B., Luo, H., Reece, M.J., and Yan, H.. Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics. J. Adv. Dielectr. 3, 1350007 (2013).CrossRefGoogle Scholar
Yan, H.X., Inam, F., Viola, G., Ning, H., Zhang, H.T., Jiang, Q.H., Zeng, T., Gao, Z.P., and Reece, M.J.: The contribution of electrical conducticity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1, 107 (2011).CrossRefGoogle Scholar
George, A.S.: The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys.: Condens. Matter 15, R367 (2003).Google Scholar
Tan, Q. and Viehland, D.: Grain size dependence of relaxor characteristics in La-modified lead zirconate titanate. Ferroelectrics 193, 157 (1997).CrossRefGoogle Scholar
Dittmer, R., Anton, E.M., Jo, W., Simons, H., Daniels, J.E., Hoffman, M., Pokorny, J., Reaney, I.M., and Rödel, J.: A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3. J. Am. Ceram. Soc. 95, 3519 (2012).CrossRefGoogle Scholar
Wu, L., Xiao, D.Q., Wu, J.G., Sun, Y., Lin, D.M., Zhu, J.G., Yu, P., Zhuang, Y., and Wei, Q.: Good temperature stability of K0.5Na0.5NbO3 based lead-free ceramics and their applications in buzzers. J. Eur. Ceram. Soc. 28, 2963 (2008).CrossRefGoogle Scholar
Yao, F.Z., Glaum, J., Wang, K., Jo, W., Rödel, J., and Li, J.F.: Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K,Na)NbO3-based lead-free piezoceramics. Appl. Phys. Lett. 103, 192907 (2013).CrossRefGoogle Scholar
Wang, K., Yao, F.Z., Jo, W., Gobeljic, D., Shvartsman, V.V., Lupascu, D.C., Li, J-F., and Rödel, J.: Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater. 23, 4079 (2013).CrossRefGoogle Scholar
Jo, W., Dittmer, R., Acosta, M., Zang, J., Groh, C., Sapper, E., Wang, K., and Röodel, J.: Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. J. Electroceram. 29, 71 (2012).CrossRefGoogle Scholar
Li, J.Y., Rogan, R.C., Ustundag, E., and Bhattacharya, K.: Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 4, 776 (2005).CrossRefGoogle ScholarPubMed