Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:00:12.178Z Has data issue: false hasContentIssue false

Effect of ceramic nanoparticle reinforcements on the quasistatic and dynamic mechanical properties of magnesium-based metal matrix composites

Published online by Cambridge University Press:  26 March 2013

Jianghua Shen
Affiliation:
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001
Weihua Yin
Affiliation:
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001
Qiuming Wei*
Affiliation:
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001
Yulong Li
Affiliation:
Department of Aeronautical Structure Engineering, School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shannxi, 710072, People’s Republic of China
Jinling Liu
Affiliation:
Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816
Linan An*
Affiliation:
Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816
*
a)Address all correspondence to these authors. e-mail: qwei@uncc.edu
Get access

Abstract

We have investigated the microstructure, the quasistatic and high-rate mechanical properties of magnesium (Mg)-based metal-matrix composites (MMCs) reinforced with nanoparticles, also termed as metal-matrix nanocomposites (MMNCs), in this case reinforced with nanoparticles of β-phase silicon carbide (β-SiC) the volume fraction ranging from 5 to 15 vol%. The yield and the ultimate strength increase with reinforcement volume fraction up to 10 vol% nanoparticles. MMCs with micrometer-sized SiC particles have higher yield strength than their MMNC counterparts, whereas the ultimate strength shows the opposing trend, suggesting greater strain hardening in the MMNCs. Transmission electron microscopy shows that the average interparticle distance decreases with increasing SiC vol%. Recrystallization was reported as completed during sintering at 575 °C [R.D. Doherty et al., Mater. Sci. Eng. A, 238, 219 (1997)], but dislocations might be generated due to thermal expansion mismatch of Mg/SiC during cooling. The majority of Mg-grains below 20 nm remain around the nanoparticles. As such a reverse volume fraction effect takes place in 15 vol% nanoparticle-reinforced MMNCs, which off sets the strengthening advantage induced by the nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avedesian, M.M. and Baker, H.: Magnesium and Magnesium Alloys (ASM International, Materials Park, OH, 1999).Google Scholar
Eliezer, D. and Aghion, E., and Froes, F.H.: Magnesium science, technology and applications. Adv. Perform. Mater. 5, 201 (1998).CrossRefGoogle Scholar
Luo, A.A.: Magnesium: Current and potential automotive applications. JOM 54, 42 (2002).CrossRefGoogle Scholar
Luo, A.A.: Recent magnesium alloy development for elevated temperature applications. Int. Mater. Rev. 49, 13 (2004).CrossRefGoogle Scholar
Burke, E.C. and Hibbard, W.R.: Plastic deformation of magnesium single crystals. Trans. AIME 194, 295 (1952).Google Scholar
Reed-Hill, R.E. and Robertson, W.D.: The crystallographic characteristics of fracture in magnesium single crystals. Acta Metall. 5, 728 (1957).CrossRefGoogle Scholar
Roberts, C.S.: Magnesium and its Alloys (John Wiley & Sons, Inc., New York, 1960).Google Scholar
Sheely, W.F. and Nash, R.R.: Mechanical properties of magnesium monocrystals. Trans. AIME 218, 416 (1960).Google Scholar
Agnew, S.R. and Duygulu, O.: Plastic anisotropy and the role of nonbasal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161 (2005).CrossRefGoogle Scholar
Hirsch, P.B. and Lally, J.S.: The deformation of magnesium single crystals. Philos. Mag. 12, 595 (1965).CrossRefGoogle Scholar
Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., and Higashi, K.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055 (2003).CrossRefGoogle Scholar
Reed-Hill, R.E. and Robertson, W.D.: Deformation of magnesium single crystals by nonbasal slip. Trans. AIME 209, 496 (1957).Google Scholar
Reed-Hill, R.E. and Robertson, W.D.: Pyramidal slip in magnesium. Trans. Met. Soc. AIME, 212, 256259 (1958).Google Scholar
Stohr, J.F. and Poirier, J.P.: Electron microscope study of pyramidal slip {1122}<1123> in magnesium. Philos. Mag. 25, 1313 (1972).CrossRefGoogle Scholar
Barnett, M.R.: Twinning and the ductility of magnesium alloys Part I: "Tension" twins. Mater. Sci. Eng., A 464, 1 (2007).CrossRefGoogle Scholar
Reed-Hill, R.E.: A study of the (1011) and (1013) twinning modes in magnesium. Trans. AIME 218, 554 (1960).Google Scholar
Wu, X.L., Youssef, K.M., Koch, C.C., Mathaudhu, S.N., Kecskes, L.J., and Zhu, Y.T.: Deformation twinning in a nanocrystalline hcp Mg alloy. Scr. Mater. 64, 213 (2011).CrossRefGoogle Scholar
Chen, B., Lin, D.L., Zeng, X.Q., and Lu, C.: Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pressing. J. Alloys Compd. 440, 94 (2007).CrossRefGoogle Scholar
Chuvil’deev, V.N., Nieh, T.G., Gryaznov, M.Y., Sysoev, A.N., and Kopylov, V.I.: Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scr. Mater. 50, 861 (2004).CrossRefGoogle Scholar
Cizek, J., Prochazka, I., Kuzel, R., Matej, Z., Cherkaska, V., Cieslar, M., Smola, B., Stulikova, I., Brauer, G., Anwand, W., Islamgaliev, R.K., and Kulyasova, O.: Ultra fine-grained metals prepared by severe plastic deformation: A positron annihilation study. Acta Phys. Pol. A 107, 745 (2005).CrossRefGoogle Scholar
Kim, W.J., An, C.W., Kim, Y.S., and Hong, S.I.: Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing. Scr. Mater. 47, 39 (2002).CrossRefGoogle Scholar
Kim, W.J., Hong, S.I., Kim, Y.S., Min, S.H., Jeong, H.T., and Lee, J.D.: Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 51, 3293 (2003).CrossRefGoogle Scholar
Liu, T., Wang, Y.D., Wu, S.D., Peng, R.L., Huang, C.X., Jiang, C.B., and Li, S.X.: Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP. Scr. Mater. 51, 1057 (2004).CrossRefGoogle Scholar
Mabuchi, M., Iwasaki, H., Yanase, K., and Higashi, K.: Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scr. Mater. 36, 681 (1997).CrossRefGoogle Scholar
Matsubara, K., Miyahara, Y., Horita, Z., and Langdon, T.G.: Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater. 51, 3073 (2003).CrossRefGoogle Scholar
Miyahara, Y., Horita, Z., and Langdon, T.G.: Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Mater. Sci. Eng., A 420, 240 (2006).CrossRefGoogle Scholar
Watanabe, H., Mukai, T., Ishikawa, K., and Higashi, K.: Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scr. Mater. 46, 851 (2002).CrossRefGoogle Scholar
Yamashita, A., Horita, Z., and Langdon, T.G.: Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng., A 300, 142 (2001).CrossRefGoogle Scholar
Choi, H.J., Kim, Y., Shin, J.H., and Bae, D.H.: Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer. Mater. Sci. Eng., A 527, 1565 (2010).CrossRefGoogle Scholar
Hwang, S., Nishimura, C., and McCormick, P.G.: Deformation mechanism of nanocrystalline magnesium in compression. Scr. Mater. 44, 1507 (2001).CrossRefGoogle Scholar
Kapoor, R. and Chakravartty, J.K.: Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing. Acta Mater. 55, 5408 (2007).CrossRefGoogle Scholar
Kubota, K., Mabuchi, M., and Higashi, K.: Processing and mechanical properties of fine-grained magnesium alloys. J. Mater. Sci. 34, 2255 (1999).CrossRefGoogle Scholar
Mukai, T., Yamanoi, M., Watanabe, H., Ishikawa, K., and Higashi, K.: Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Mater. Trans. 42, 1177 (2001).CrossRefGoogle Scholar
Perez-Prado, M.T., del Valle, J.A., and Ruano, O.A.: Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scr. Mater. 51, 1093 (2004).CrossRefGoogle Scholar
Somekawa, H. and Mukai, T.: Effect of grain refinement on fracture toughness in extruded pure magnesium. Scr. Mater. 53, 1059 (2005).CrossRefGoogle Scholar
St John, D.H., Qian, M., Easton, M.A., Cao, P., and Hildebrand, Z.: Grain refinement of magnesium alloys. Metall. Mater. Trans. A 36, 1669 (2005).CrossRefGoogle Scholar
Yang, Q. and Ghosh, A.K.: Deformation behavior of ultrafine-grain (UFG) AZ31B Mg alloys at room temperature. Acta Mater. 54, 5159 (2006).CrossRefGoogle Scholar
Dao, M., Lu, L., Asaro, R.J., de Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).CrossRefGoogle Scholar
Wei, Q., Pan, Z.L., Wu, X.L., Schuster, B.E., Kecskes, L.J., and Valiev, R.Z.: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high pressure torsion. Acta Mater. 59, 2423 (2011).CrossRefGoogle Scholar
Dieringa, H.: Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review. J. Mater. Sci. 46, 289 (2011).CrossRefGoogle Scholar
Goh, C.S., Wei, J., Lee, L.C., and Gupta, M.: Development of novel carbon-nanotube-reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology 17, 7 (2006).CrossRefGoogle Scholar
Paramsothy, M., Hassan, S.F., Srikanth, N., and Gupta, M.: Simultaneous Enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon Nanotubes. J. Nanosci. Nanotechnol. 10, 956 (2010).CrossRefGoogle ScholarPubMed
Ferkel, H. and Mordike, B.L.: Magnesium strengthened by SiC nanoparticles. Mater. Sci. Eng., A 298, 193 (2001).CrossRefGoogle Scholar
Habibi, M.K., Joshi, S.P., and Gupta, M.: Hierarchical magnesium nano-composites for enhanced mechanical response. Acta Mater. 58, 6104 (2010).CrossRefGoogle Scholar
Habibi, M.K., Paramsothy, M., Hamouda, A.M.S., and Gupta, M.: Using integrated hybrid (Al plus CNT) reinforcement to simultaneously enhance strength and ductility of magnesium. Compos. Sci. Technol. 71, 734 (2011).CrossRefGoogle Scholar
Hassan, S.F.: Effect of primary processing techniques on the microstructure and mechanical properties of nano-Y2O3 reinforced magnesium nanocomposites. Mater. Sci. Eng., A 528, 5484 (2011).CrossRefGoogle Scholar
Hassan, S.F. and Gupta, A.: Development of high performance magnesium nanocomposites using nano-Al2O3 as reinforcement. Mater. Sci. Eng., A 392, 163 (2005).CrossRefGoogle Scholar
Hassan, S.F. and Gupta, M.: Development of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd. 345, 246 (2002).CrossRefGoogle Scholar
Hassan, S.F. and Gupta, M.: Development of high performance magnesium nanocomposites using solidification processing route. Mater. Sci. Technol. 20, 1383 (2004).CrossRefGoogle Scholar
Jayaramanavar, P., Paramsothy, M., Balaji, A., and Gupta, M.: Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J. Mater. Sci. 45, 1170 (2010).CrossRefGoogle Scholar
Jia, X.Y., Liu, S.Y., Gao, F.P., Zhang, Q.Y., and Li, W.Z.: Magnesium matrix nanocomposites fabricated by ultrasonic assisted casting. Int. J. Cast Metals Res. 22, 196 (2009).CrossRefGoogle Scholar
Lan, J., Yang, Y., and Li, X.C.: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater. Sci. Eng., A 386, 284 (2004).CrossRefGoogle Scholar
Nie, K.B., Wang, X.J., Hu, X.S., Xu, L., Wu, K., and Zheng, M.Y.: Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration. Mater. Sci. Eng., A 528, 5278 (2011).CrossRefGoogle Scholar
Poddar, P., Srivastava, V.C., De, P.K., and Sahoo, K.L.: Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater. Sci. Eng., A 460, 357 (2007).CrossRefGoogle Scholar
Rauber, C., Lohmueller, A., Opel, S., and Singer, R.F.: Microstructure and mechanical properties of SiC particle reinforced magnesium composites processed by injection molding. Mater. Sci. Eng., A 528, 6313 (2011).CrossRefGoogle Scholar
Tun, K.S., Gupta, M., and Srivatsan, T.S.: Investigating influence of hybrid (yttria plus copper) nanoparticulate reinforcements on microstructural development and tensile response of magnesium. Mater. Sci. Technol. 26, 87 (2010).CrossRefGoogle Scholar
Wang, Z-H., Wang, X-D., Zhao, Y-X., and Du, W-B.: SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method. Trans. Nonferrous Met. Soc. China 20, S1029 (2010).CrossRefGoogle Scholar
Wu, Y.W., Wu, K., Nie, K.B., Deng, K.K., Hu, X.S., Wang, X.J., and Zheng, M.Y.: Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites. Mater. Sci. Eng., A 527, 7873 (2010).CrossRefGoogle Scholar
Liu, S-Y., Gao, F-P., Zhang, Q-Y., Zhu, X., and Li, W-Z.: Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing. Trans. Nonferrous Met. Soc. China 20, 1222 (2010).CrossRefGoogle Scholar
Lloyd, D.J.: Particle-reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994).CrossRefGoogle Scholar
Luo, A.: Processing, microstructure, and mechanical-behavior of cast magnesium metal-matrix composites. Metall. Mater. Trans. A 26, 2445 (1995).CrossRefGoogle Scholar
Han, B.Q. and Dunand, D.C.: Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater. Sci. Eng., A 277, 297 (2000).CrossRefGoogle Scholar
Krishnadev, M.R., Angers, R., Nair, C.G.K., and Huard, G.: The structure and properties of magnesium-matrix composites. JOM 45, 52 (1993).CrossRefGoogle Scholar
Huard, G., Angers, R., Krishnadev, M.R., Tremblay, R., Dube, D.: SiCp/Mg composites made by low-energy mechanical processing. Can. Metall. Q. 38, 193 (1999).CrossRefGoogle Scholar
Guo, Y.B., Shim, V.P.W., and Tan, B.W.F.: Response of Magnesium Nanocomposites to Quasi Static and Dynamic Loading. IMPLAST 2010 (Society for Experimental Mechanics, Inc., Rhode Island, 2010).Google Scholar
Ulacia, I., Dudamell, N.V., Galvez, F., Yi, S., Perez-Prado, M.T., and Hurtado, I.: Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater. 58, 2988 (2010).CrossRefGoogle Scholar
Chen, W.N. and Song, B.: Split Hopkinson (Kolsky) Bar (Springer, New York, 2011).CrossRefGoogle Scholar
Follansbee, P.S.: High strain rate compression testing. ASM Metals Handbook 8, 190 (1985).Google Scholar
Nemat-Nasser, S.: High strain rate testing. In ASM Handbook, edited by Kuhn, H. and Medlin, D. (ASM 8, Materials Park, Ohio, 2007) p. 425.Google Scholar
Jia, D. and Ramesh, K.T.: A rigorous assessment of the benefits of miniaturization in the Kolsky bar system. Exp. Mech. 44, 445 (2004).CrossRefGoogle Scholar
Li, Y.L., Guo, Y.Z., Hu, H.T., and Wei, Q.: A critical assessment of high-temperature dynamic mechanical testing of metals. Int. J. Impact Eng. 36, 177 (2008).CrossRefGoogle Scholar
Zhang, K., Alexandrov, I.V., Valiev, R.Z., and Lu, K.: Structural characterization of nanocrystalline copper by means of x-ray diffraction. J. Appl. Phys. 80, 5617 (1996).CrossRefGoogle Scholar
Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Jensen, D.J., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., and Rollett, A.D.: Current issues in recrystallization: A review. Mater. Sci. Eng., A 238, 219 (1997).CrossRefGoogle Scholar
Garces, G., Onorbe, E., Perez, P., Klaus, M., Genzel, C., and Adeva, P.: Influence of SiC particles on compressive deformation of magnesium matrix composites. Mater. Sci. Eng., A 533, 119 (2012).CrossRefGoogle Scholar
Ibrahim, I.A., Mohamed, F.A., and Lavernia, E.J.: Particulate reinforced metal matrix composites - a review. J. Mater. Sci. 26, 1137 (1991).CrossRefGoogle Scholar
Clyne, T.W. and Withers, P.J.: An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
Christman, T., Needleman, A., and Suresh, S.: An experimental and numerical study of deformation in metal ceramic composites. Acta Metall. 37, 3029 (1989).CrossRefGoogle Scholar
Li, Y. and Ramesh, K.T.: Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain. Acta Mater. 46, 5633 (1998).CrossRefGoogle Scholar
Li, Y., Ramesh, K.T., and Chin, E.S.C.: Viscoplastic deformations and compressive damage in an A359/SiCp metal-matrix composite. Acta Mater. 48, 1563 (2000).CrossRefGoogle Scholar
Bao, G. and Lin, Z.: High strain rate deformation in particle-reinforced metal matrix composites. Acta Mater. 44, 1011 (1996).CrossRefGoogle Scholar
Yadav, S., Chichili, D.R., and Ramesh, K.T.: The mechanical response of a 6061-T6 Al/Al2O3 metal-matrix composite at high-rates of deformation. Acta Metall. Mater. 43, 4453 (1995).CrossRefGoogle Scholar
Ravichandran, K.S.: A simple-model of deformation-behavior of two phase composites. Acta Metall. Mater. 42, 1113 (1994).CrossRefGoogle Scholar
Nan, C.W. and Clarke, D.R.: The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater. 44, 3801 (1996).CrossRefGoogle Scholar
Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A 241, 376 (1957).Google Scholar
Groh, S., Devincre, B., Kubin, L.P., Roos, A., Feyel, F., and Chaboche, J.L.: Size effects in metal matrix composites. Mater. Sci. Eng., A 400, 279 (2005).CrossRefGoogle Scholar
Hall, E.O.: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. London, Sect. B 64, 747 (1951).CrossRefGoogle Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).Google Scholar
Li, J.C.M.: Petch relation and grain boundary sources. Trans. Metall. Soc. AIME 227, 239 (1963).Google Scholar
Ashby, M.F.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).CrossRefGoogle Scholar
Louchet, F., Weiss, J., and Richeton, T.: Hall-Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett. 97, 075504 (2006).CrossRefGoogle ScholarPubMed
Wei, Q.: Strain rate effects in the ultrafine grain and nanocrystalline regimes–its influence on some constitutive behavior. J. Mater. Sci. 42, 1709 (2007).CrossRefGoogle Scholar
Shan, Z.W., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., and Mao, S.X.: Grain boundary mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).CrossRefGoogle ScholarPubMed
Mortensen, A. and Llorca, J.: Metal matrix composites. In Annual Review of Materials Research, edited by Clarke, D.R., Ruhle, M., and Zok, F. (Annual Reviews 40, Palo Alto, 2010), p. 243.Google Scholar
Gupta, M. and Sharon, N.M.L.: Magnesium, Magnesium Alloys and Magnesium Composites (Wiley, New York, 2011).CrossRefGoogle Scholar
Nardone, V.C. and Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Metall. 20, 43 (1986).CrossRefGoogle Scholar
Wei, Q. and Kecskes, L.J.: Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten. Mater. Sci. Eng., A 491, 62 (2008).CrossRefGoogle Scholar
Trojanova, Z., Lukac, P., and Szaraz, Z.: Deformation behavior of nanocrystalline Mg studied at elevated temperatures. Rev. Adv. Mater. Sci. 10, 437 (2005).Google Scholar