Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T20:01:54.030Z Has data issue: false hasContentIssue false

Effect of composition on phase formation and morphology in Ti–Si1−xGex solid phase reactions

Published online by Cambridge University Press:  03 March 2011

D.B. Aldrich*
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
Y.L. Chen
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
D.E. Sayers
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
R.J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
S.P. Ashburn
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911
M.C. Öztürk
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911
*
a)Current address: Texas Inst., Inc., SPDC, P.O. Box 655012, MS461, Dalls, Texas 75265.
Get access

Abstract

The effects of Si1−xGex alloy composition on the Ti-Si1−xGex solid phase reaction have been examined. Specifically, effects on the titanium gcrmanosilicide phase formation sequence. C54 Ti(Si1−yGey)2 nucleation temperature, and C54 Ti(Si1−yGey)2 morphology were examined. It was determined that the Ti-Si1−xGex reaction follows a “Ti-Si-like” reaction path for Si-rich Si1−xGex alloys and follows a “Ti-Ge-like” reaction path for Ge-rich Si1−xGex alloys. The coexistence of multiple titanium germanosilicide phases was observed during Ti-Si1−xGex reactions for Si1−xGex alloys in an intermediate composition range. The morphology and stability of the resulting C54 germanosilicides were directly correlated to the Ti-Si1−xGex reaction path. Smooth continuous C54 titanium germanosilicide was formed for samples with Si1−xGex compositions in the “Ti-Si-like” regime. Discontinuous islanded C54 germanosilicides were formed for samples with Si1−xGex compositions in the mixed phase and “Ti-Ge-like” regimes. Using rapid thermal annealing techniques, it was found that the C54 titanium germanosilicides were stable to higher temperatures. This indicated that the morphological degradation occurs after C54 phase formation. The C54 Ti(Si1−xGex)2 formation temperature was examined as a function of alloy composition and was found to decrease by ≍ 70 °C as the composition approached x ≍ 0.5. An optimum Si1−xGex alloy composition range of 0 ⋚ x ⋚ 0.36 was determined for the formation of stable-continuous-low-resistivity-C54 titanium germanosilicide films from the solid phase reaction of Ti and Si1−xGex alloy. The results were described in terms of the relevant nucleation processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murarka, S.P., Metallization: Theory and Practice for VLSI and ULSI (Butterworth-Heinemann, Boston, MA, 1993).Google Scholar
2Thomas, O., Delage, S., d'Heurle, F.M., and Scilla, G., Appl. Phys. Lett. 54, 228230 (1989).CrossRefGoogle Scholar
3Aldrich, D. B., Jahncke, C. L., Nemanich, R. J., and Sayers, D. E., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R.F.C., Harbison, J.P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), pp. 343348.Google Scholar
4Aldrich, D.B., Nemanich, R.J., and Sayers, D. E., in Proceedings of the 7th International Conference on X-ray Absorption Fine Structure, Vol. 32, Suppl. 32-2, edited by Kuroda, H., Ohta, T., Murata, T., Udagawa, Y., and Nomura, M. (Japanese Journal of Applied Physics, Tokyo, Japan, 1993), pp. 725727.Google Scholar
5Ren, X., Öztürk, M. C., Grider, D.T., Sanganeria, M., and Ashburn, S., in Rapid Thermal and Integrated Processing II, edited by Gelpey, J. C., Elliott, J. K., Wortman, J. J., and Ajmera, A. (Mater. Res. Soc. Symp. Proc. 303, Pittsburgh, PA, 1993), pp. 3741.Google Scholar
6Grider, D.T., Öztürk, M.C., Wortman, J.J., Harris, G. S., and Maher, D. M., in Rapid Thermal and Integrated Processing II, edited by Gelpey, J. C., Elliott, J. K., Wortman, J. J., and Ajmera, A. (Mater. Res. Soc. Symp. Proc. 303, Pittsburgh, PA, 1993), pp. 3136.Google Scholar
7Ashburn, S. P., Grider, D. T., and Öztürk, M. C., J. Appl. Phys. 74, 4455 (1993).CrossRefGoogle Scholar
8King, T.J., Pfiester, J.R., Short, J.D., McVitte, J.P., and Saraswat, K.C., IEDM Technical Digest 90, 253 (1990).Google Scholar
9King, T-J., Saraswat, K.C., and Pfiester, J.R., IEEE Electron Device Lett. 12, 584586 (1991).CrossRefGoogle Scholar
10Garone, P. M., Venkataraman, V., and Sturm, J. C., IEDM Technical Digest 90, 383 (1990).Google Scholar
11Strum, J. C., Prinz, E. J., and Magee, C. W., IEEE Electron Device Lett. 12, 303305 (1991).CrossRefGoogle Scholar
12Murarka, S.P., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
13Maex, K., Mater. Sci. Eng. Rll, 53153 (1993).Google Scholar
14Ma, Z., Xu, Y., Allen, L.H., and Lee, S., J. Appl. Phys. 74, 29542956 (1993).CrossRefGoogle Scholar
15Pearson's Handbook of Crystallographic Data for Intermetallic Phases, edited by Villars, P. and Calvert, L.D. (ASM INTERNATIONAL, Materials Park, OH, 1991), Vols. 14.Google Scholar
16Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 3.Google Scholar
17Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 52405245 (1985).CrossRefGoogle Scholar
18Berti, M., Drigo, A. V., Cohen, C., Siejka, J., Bentini, G.G., Nipoti, R., and Guerri, S., J. Appl. Phys. 55, 35583565 (1984).CrossRefGoogle Scholar
19Thomas, O., d'Heurle, F.M., Delage, S., and Scilla, G., Appl. Surf. Sci. 38, 2736 (1989).CrossRefGoogle Scholar
20Ashburn, S.P., Öztürk, M.C., Wortman, J.J., Harris, G., Honeycutt, J., and Maher, D. M., J. Electron. Mat. 21, 8186 (1992).CrossRefGoogle Scholar
21Thomas, O., d–Heurle, F.M., and Delage, S., J. Mater. Res. 5, 14531461 (1990).CrossRefGoogle Scholar
22Aldrich, D.B., Chen, Y.L., Sayers, D.E., and Nemanich, R.J., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L.J., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), pp. 305310.Google Scholar
23d'Heurle, F.M., J. Mater. Sci. 3, 167195 (1988).Google Scholar
24Ashburn, S.P., Ph.D. Thesis, North Carolina State University (1994).Google Scholar
25Ashburn, S.P., Öztürk, M.C., Harris, G., Maher, D.M., Aldrich, D.B., and Nemanich, R.J., private communication.Google Scholar
26Jeon, H., Sukow, C. A., Honeycutt, J.W., Humphreys, T. P., Nemanich, R. J., and Rozgonyi, G. A., in Advanced Metallizations in Microelectronics, edited by Katz, A., Murarka, S.P., and Appelbaum, A. (Mater. Res. Soc. Symp. Proc. 181, Pittsburgh, PA, 1990), pp. 559564.Google Scholar
27Aldrich, D.B., Nemanich, R.J., and Sayers, D.E., Phys. Rev. B 50, 1502615033 (1994).CrossRefGoogle Scholar
28Zhong, Y., Öztürk, M.C., Grider, D.T., Wortman, J.J., and Littlejohn, M.A., Appl. Phys. Lett. 57, 20922094 (1990).CrossRefGoogle Scholar
29Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashburn, S.P., and Öztürk, M.C., J. Appl. Phys. 77, 51075115 (1995).CrossRefGoogle Scholar
30Aldrich, D. B., Fiordalice, R. W., Jeon, H., Islam, Q., Nemanich, R. J., and Sayers, D.E., in Atomic Scale Structure of Interfaces, edited by Bringans, R.D., Feenstra, R. M., and Gibson, J.M. (Mater. Res. Soc. Symp. Proc. 159, Pittsburgh, PA, 1990), pp. 167172.Google Scholar
31Dao, Y., Edwards, A.M., Sayers, D.E., and Nemanich, R.J., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L.J., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), pp. 367372.Google Scholar
32Hong, Q.Z., Barmak, K., and d'Heurle, F.M., Appl. Phys. Lett. 62, 34353437 (1993).CrossRefGoogle Scholar
33Darken, L. S. and Gurry, R.W., Physical Chemistry of Metals (McGraw-Hill Book Company, Inc., New York, 1953).Google Scholar
34Jeon, H. and Nemanich, R.J., Thin Solid Films 184, 357363 (1990).CrossRefGoogle Scholar
35Jeon, H., Sukow, C. A., Honeycutt, J.W., Rozgonyi, G. A., and Nemanich, R.J., J. Appl. Phys. 71, 42694276 (1992).CrossRefGoogle Scholar
36Sukow, C.A. and Nemanich, R.J., J. Mater. Res. 9, 12141227 (1994).CrossRefGoogle Scholar
37Kropman, B.L., Thesis, Universiteit Twente (1993).Google Scholar
38Pretorius, R., Marais, T. K., and Theron, C. C., Mater. Sci. Eng. 10, 183 (1993).Google Scholar
39Robinson, P.M. and Bever, M. B., in Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley and Sons, Inc., New York, 1967), pp. 3878.Google Scholar
40DeAvillez, R. R., Clevenger, L. A., and Thompson, C. V., J. Mater. Res. 5, 593600 (1990).CrossRefGoogle Scholar
41Aldrich, D.B., Sayers, D.E., and Nemanich, R.J., in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H. A., Chason, E. H., Grabow, M. L., and Lagally, M. G. (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), pp. 585588.Google Scholar
42CRC Handbook of Chemistry and Physics, edited by Lide, D. R. (CRC Press, Inc., Ann Arbor, MI, 1992).Google Scholar
43Boutarek, N. and Madar, R., Appl. Surf. Sci. 73, 209213 (1993).CrossRefGoogle Scholar
44Cohesion in Metals: Transition Metal Alloys, edited by deBoer, F. R., Boom, R., Mattens, W.CM., Miedema, A.R., and Niessen, A.K. (North-Holland Physics Publishing, New York, 1988).Google Scholar