Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T22:21:25.587Z Has data issue: false hasContentIssue false

The effect of ion induced damage on the hardness, wear, and friction of zirconia

Published online by Cambridge University Press:  31 January 2011

E. L. Fleischer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
W. Hertl
Affiliation:
Corning Inc., Corning, New York 14831
T. L. Alford
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
P. Børgesen
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

Microhardness measurements were carried out on ion implanted single crystal Y2O3 stabilized cubic ZrO2. Inert gas ions (Ne, Ar, Xe) and N, Si, Ti, and W were implanted up to fluences of 3 × 1017 ions/cm2. Implantation energies were selected to give equivalent ranges. Comparison of the Knoop microhardness values of ZrO2 implanted with various species over a range of fluences showed that the principal variable causing hardness changes is damage energy and not the ion fluence nor the ion species. For all implants studied, the hardness versus damage energy gives a unified plot. At low doses the hardness rises with increasing deposited damage energy to a value 15% higher than that of unimplanted zirconia. With additional damage the hardness drops to a value 15% lower than that of the unimplanted zirconia. Friction and wear measurements in a pin-on-disk assembly showed very different behavior for high dose versus unimplanted ZrO2. The unimplanted samples showed debris with an associated rise in friction. The implanted system showed much less debris and a constant value of friction even after 10 000 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1McHargue, C. J., Int. Metals Reviews 3 (2), 49 (1986).Google Scholar
2McHargue, C.J., Defect and Diffusion Forum 57–58, 359380 (1988).CrossRefGoogle Scholar
3Bull, S. J. and Page, T. F., Nucl. Instrum. Methods in Phys. Res. B 32, 91–95 (1988).CrossRefGoogle Scholar
4Kelly, R., Nucl. Instrum. Methods 182/183, 351378 (1981).CrossRefGoogle Scholar
5Farlow, G. C., Sklad, P. S., White, C.W., McHargue, C. J. and Appleton, B. R., Mater. Res. Soc. Symp. Proc. 60, 387394 (1986).Google Scholar
6White, C.W., Farlow, G. C., Naramoto, H., McHargue, C. J. and Appleton, B.R., Mater. Res. Soc. Symp. Proc. 24, 163172 (1984).CrossRefGoogle Scholar
7McHargue, C. J., White, C.W., Appleton, B.R., Farlow, G.C. and Williams, J.M., Mater. Res. Soc. Symp. Proc. 27, 385393 (1984).CrossRefGoogle Scholar
8Farlow, G. C., White, C.W., McHargue, C. J., Sklad, P. S. and Appleton, B. R., Nucl. Instrum. Methods in Phys. Res. B 7/8, 541546 (1985).CrossRefGoogle Scholar
9Lewis, M. B., Nucl. Instrum. Methods in Phys. Res. B7/8, 530534 (1985).Google Scholar
10Naramoto, H., White, C.W., Williams, J. M., McHargue, C. J., Holland, O.W., Abraham, M.M. and Appleton, B.R., J. Appl. Phys. 54(2), 683698 (1983).Google Scholar
11Bull, J. and Page, T. F., J. Mater. Sci. 23, 42174230 (1988).CrossRefGoogle Scholar
12Hioki, T., Itoh, A., Noda, S., Doi, H., Kawamoto, J. and Kamigaito, O., J. Mater. Sci. Lett. 3, 10991101 (1984).CrossRefGoogle Scholar
13Appleton, B. R., Naramoto, H., White, C.W., Holland, O.W., McHargue, C. J., Farlow, G., Narayan, J. and Williams, J. M., Nucl. Instrum. Methods in Phys. Res. B l, 167175 (1984).Google Scholar
14McHargue, C.J., Farlow, G.C., White, C.W., Appleton, B.R., Angelini, P. and Naramoto, H., Nucl. Instrum. Methods in Phys. Res. B10/11, 569573 (1987).CrossRefGoogle Scholar
15McHargue, C. J., Farlow, G. C., White, C.W., Williams, J. M., Appleton, B. R. and Naramoto, H., Mater. Sci. Engr. 69, 123127 (1985).Google Scholar
16Oliver, W. C., McHargue, C. J., Farlow, G.C. and White, C.W., Mater. Res. Soc. Symp. Proc. 60, 515523 (1986).Google Scholar
17Burnett, P.J. and Page, T.F., J. of Mater. Sci. 19, 35243545 (1984).CrossRefGoogle Scholar
18Farlow, G. C., Sklad, P. S., White, C.W. and McHargue, C. J., Mater. Res. Soc. Symp. Proc. 27, 395400 (1984).Google Scholar
19Christel, P., Meunier, A., Heller, M., Torre, J. P. and Peille, C. N., J. Biomed. Mater. Res. 23, 4561 (1989).CrossRefGoogle Scholar
20Lankford, J., Wei, W. and Kossowsky, R., J. Mater. Sci. 22, 20692078 (1987).CrossRefGoogle Scholar
21Wei, W. and Lankford, J., J. Mater. Sci. 22, 23872396 (1987).CrossRefGoogle Scholar
22Wei, W., Lankford, J. and Kossowsky, R., Mater. Sci. Engr. 90, 307315 (1987).CrossRefGoogle Scholar
23Legg, K. L., Cochran, J. K., Solnick-Legg, H. F. and Mann, X. L., Nucl. Instrum. Methods in Phys. Res. B7/8, 535540 (1985).Google Scholar
24Scherzer, B. M.U., Sputtering by Ion Bombardment, II, edited by Behrisch, R. (Springer Berlin/Heidelberg/NY, 1982).Google Scholar
25Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods in Phys. Res. 174, 257 (1980).Google Scholar
26Doolittle, L.R., Nucl. Instrum. Methods in Phys. Res. B9, 344(1985).Google Scholar
27 (ASTM C849–81)Google Scholar