Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T17:33:27.046Z Has data issue: false hasContentIssue false

Effect of lattice mismatch on the epitaxy of sol-gel LiNbO3 thin films

Published online by Cambridge University Press:  03 February 2012

T. A. Derouin
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
C. D. E. Lakeman
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
X. H. Wu
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
J. S. Speck
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
Get access

Abstract

A solution precursor method based on metal alkoxides was used to produce epitaxial LiNbO3 thin films, ≈200 nm thick, on (0001) sapphire substrates. Transmission electron. microscopy revealed that the major cause of surface roughness in these films was grain boundary grooves between mosaic grains with misorientations ≤5°. It is postulated that these low angle boundaries directly result in surface grooving and roughness. The epitaxial films also contained two distinguishable variants in the film/substrate interfacial plane, namely, an aligned variant, and a 60° rotated variant, . A seeded grain growth method was used to minimize the presence of the 60° rotated variant. An epitaxial buffer layer of Fe2O3 was used to lower the mismatch strain, eliminate the 60° rotated variant, and reduce the mosaic nature of the LiNbO3 film. X-ray rocking curve full-width-at-half-maximum (FWHM) values measured on the film peak indicate that the mosaic character can be reduced from 1.5° to 0.76° by using a buffer layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jackel, J., Rice, C., and Veselka, J., Appl. Phys. Lett. 41 (7), 607 (1982).CrossRefGoogle Scholar
2.Digonnet, M., Fejer, M., and Beyer, R., Opt. Lett. 10 (5), 235 (1985).CrossRefGoogle Scholar
3.Schmidt, R. and Kaminow, I., Appl. Phys. Lett. 25, 458 (1974).CrossRefGoogle Scholar
4.Cromer, D., DeBrabander, G., Boyd, J., and Jackson, H., SPIE 993, 34 (1988).Google Scholar
5.Fork, D. K., Armani-Leplingard, F., Kingston, J. J., and Anderson, G. B., in Thin Films for Integrated Optics Applications, edited by Wessels, B. W., Marder, S. R., and Walba, D. M. (Mater. Res. Soc. Symp. Proc. 392, Pittsburgh, PA, 1995), p. 189.Google Scholar
6.Hagberg, D. S. and Payne, D. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 19.Google Scholar
7.Clem, P. G. and Payne, D. A., in Thin Films for Integrated Optics Applications, edited by Wessels, B. W., Marder, S. R., and Walba, D. M. (Mater. Res. Soc. Symp. Proc. 392, Pittsburgh, PA, 1995), p. 201.Google Scholar
8.Eichorst, D. J. and Payne, D. A., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 773.Google Scholar
9.Nashimoto, K. and Cima, M. J., Mater. Lett. 10, 348 (1991).CrossRefGoogle Scholar
10.Joshi, V., Goo, G. K., and Mecartney, M. L., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 377.Google Scholar
11.Hur, N. H., Park, Y. K., Won, D. H., and No, K., J. Mater. Res. 9, 980 (1994).CrossRefGoogle Scholar
12.Yanovskaya, M. I., Turevskaya, E. P., Leonov, A. P., Ivanov, S. A., Kolganova, N. V., Stefanovich, S. Yu., and Turova, N. Ya., J. Mater. Sci. 23 (2), 395 (1988).CrossRefGoogle Scholar
13.Partlow, D. P. and Greggi, J., J. Mater. Res. 2, 595 (1987).CrossRefGoogle Scholar
14.Hirano, S. and Kato, K., Adv. Ceram. Mater. 3 (5), 503 (1988).CrossRefGoogle Scholar
15.Nashimoto, K., Cima, M. J., McIntyre, P. C., and Rhine, W. E., J. Mater. Res. 10 (19), 2564 (1995).CrossRefGoogle Scholar
16.Lu, Z., Hiskes, R., DiCarolis, S. A., Route, R. K., Feigelson, R. S., Leplingard, F., and Fouquet, J. E., J. Mater. Res. 9, 2258 (1994).CrossRefGoogle Scholar
17.Fork, D. K. and Anderson, G. B., Appl. Phys. Lett. 63 (8), 1029 (1993).CrossRefGoogle Scholar
18.Kanata, T., Kobayashi, Y., and Kubota, K., J. Appl. Phys. 62 (7), 2989 (1987).CrossRefGoogle Scholar
19.Wernberg, A. K., Gysling, H. J., Filo, A. J., and Blanton, T. N., Appl. Phys. Lett. 62 (9), 946 (1993).CrossRefGoogle Scholar
20.Kingston, J. J., Fork, D. K., Leplingard, F., and Ponce, F. A., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 289.Google Scholar
21.Rost, T. A. and Rabson, T. A., IEEE Trans. Ultrason., Ferroelectrics and Frequency Control 38 (6), 640 (1991).Google Scholar
22.Fujimura, N., Kakinoki, M., Tsuboi, H., and Ito, T., J. Appl. Phys. 75 (4), 2169 (1994).CrossRefGoogle Scholar
23.Miller, K., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar
24.Seifert, A., Lange, F., and Speck, J., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
25. Powder Diffraction File (Joint Committee on Powder Diffraction Standards, 1992), cards 33–664, 42–1468, 20–631.Google Scholar
26.Shriver, D. F., The Manipulation of Air-Sensitive Compounds (Robert E. Krieger Publ. Co., Malabar, FL, 1982).Google Scholar
27.Hirano, S., private communication.Google Scholar
28.Clem, P. G. and Payne, D., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995).Google Scholar
29.Hutchinson, J. W. and Suo, Z., in Applied Mechanics, edited by Hutchinson, J. W. and Wu, T. Y. (Academic Press, San Diego, CA, 1991), Vol. 28.Google Scholar
30.Halstead, T. K., J. Chem. Phys. 53 (9), 3427 (1970).CrossRefGoogle Scholar
31.Miller, K. T., Lange, F. F., and Marshall, D. B., J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
32.Seifert, A., Vojta, A., Speck, J. S., and Lange, F. F., J. Mater. Res. 11, 14701482 (1996).CrossRefGoogle Scholar
33.Miller, K. T. and Lange, F. F., J. Mater. Res. 6, 2387 (1991).CrossRefGoogle Scholar
34.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Wiley, New York, 1982), Chap. 19.Google Scholar