Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T01:08:38.834Z Has data issue: false hasContentIssue false

The effect of lead content on the critical current density, irreversibility field, and microstructure of Ag-clad Bi1.8PbxSr2Ca2Cu3Oy tapes

Published online by Cambridge University Press:  31 January 2011

J. W. Anderson
Affiliation:
Applied Superconductivity Center and Materials Science Program, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706
S. E. Dorris
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J. A. Parrell
Affiliation:
Applied Superconductivity Center and Materials Science Program, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706
D. C. Larbalestier
Affiliation:
Applied Superconductivity Center and Materials Science Program, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706
Get access

Abstract

We studied the effect of lead content (x = 0.20−0.40) on the critical current density Jc (0 T, 77 K), irreversibility field H* (77 K), and microstructure of monocore, Ag-clad Bi1.8PbxSr2Ca2Cu3Oy (2223) tapes, finding that tapes with lower lead contents (x = 0.20–0.25) required higher processing temperatures (840 and 832 °C, respectively) to complete 2223 formation, as compared to the optimum 820 °C reaction temperature of the x = 0.30–0.40 tapes. We found that both the zero-field and the in-field properties correlated strongly to the phase purity with Jc (0 T, 77 K) reaching a maximum of ˜20 kA/cm2 for x = 0.30, and then decreasing with increasing lead content to ˜12 kA/cm2 for x = 0.40. H* (77 K) increased from ˜165 mT at x = 0.20 to ˜265 mT at x = 0.30, then declined to 195 mT at x = 0.40. Optimizing the lead content at x = 0.30 maximized both the connectivity and the flux pinning contributions to the critical current density.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sunshine, S. A., Siegrist, T., Schneemeyer, L. F., Murphy, D.W., Cava, R. J., Batlogg, B., Dover, R.B., Fleming, R. M., Glarum, S. H., Nakahara, S., Farrow, R., Krajewski, J.J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W. Jr, and Peck, W. F., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
2.Jeremie, S., Alami-Yadri, K., Grivel, J-C., and Flükiger, R., Supercond. Sci. Technol. 6, 730 (1993).CrossRefGoogle Scholar
3.Tsuchiya, J., Endo, H., Kijima, N., Sumiyama, A., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 28, L1918 (1989).Google Scholar
4.Grivel, J-C., Jeremie, A., Hensel, B., and Flükiger, R., Supercond. Sci. Technol. 6, 725 (1993).Google Scholar
5.Kijima, N., Endo, H., Tsuchiya, J., Sumiyama, A., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L1852 (1988).CrossRefGoogle Scholar
6.Uzumaki, T., Yamanaka, K., Kamehara, N., and Niwa, K., Jpn. Appl. Phys. 28, L75 (1989).Google Scholar
7.Oh, S. and Osamura, K., Supercond. Sci. Technol. 4, 293 (1991).Google Scholar
8.Morgan, P., Piché, J., and Housely, R., Physica C 191, 179 (1992).CrossRefGoogle Scholar
9.Ikeda, Y., Ito, H., Shimomura, S., Hiroi, Z., Takano, M., Bando, Y., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Takeda, Y., and Takada, T., Physica C 190, 18 (1991).Google Scholar
10.Chen, Y.L. and Stevens, R., J. Am. Ceram. Soc. 75, 1150 (1992).Google Scholar
11.Wong-Ng, W., Chiang, C., Freiman, S., Cook, L., and Hill, M., Am. Ceram. Soc. Bull. 71, 1261 (1992).Google Scholar
12.Zorn, G., Hornung, R., Göbel, H., Seebacher, B., Newmüller, H., and Tomandl, G., Supercond. Sci. Technol. 8, 234 (1995).Google Scholar
13.Dorris, S.E., Prorok, B. C., Lanagan, M.T., Sinha, S., and Poeppel, R. B., Physica C 212, 66 (1993).CrossRefGoogle Scholar
14.Dorris, S. E., Prorok, B. C., Lanagan, M. T., Browning, N. B., Hagan, M. R., Parrell, J. A., Feng, Y., Umezawa, A., and Larbalestier, D. C., Physica C 223, 163 (1994).Google Scholar
15.Majewski, P., Kaesche, S., Su, H-L., and Aldinger, F., Physica C 221, 29 (1994).Google Scholar
16.Zhang, W., Hellstrom, E. E., and Polak, M., Supercond. Sci. Technol. 9, 971 (1996).Google Scholar
17.Xu, M., Finnemore, D., Balachandran, U., and Haldar, P., Appl. Phys. Lett. 66, 3359 (1995).Google Scholar
18.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, T., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
19.Koyama, S., Endo, U., and Kawai, T., Jpn. J. Appl. Phys. 27, L1861 (1988).Google Scholar
20.Chavira, E., Escudero, R., Ríos-Jara, D., and León, L., Phys. Rev. 38, 9272 (1988).CrossRefGoogle Scholar
21.Pierre, L., Schneck, J., Morin, D., Tolédano, J., Primot, J., Daguet, C., and Savary, H., J. Appl. Phys. 68, 2296 (1990).Google Scholar
22.MacManus-Driscoll, J., Bravman, J., Savoy, R., Gorman, G., and Beyers, R., J. Am. Ceram. Soc. 77, 2305 (1994).CrossRefGoogle Scholar
23.Sastry, P. V. P.S. S. and West, A. R., J. Mater. Chem. 4, 647 (1994).Google Scholar
24.Briant, C. L., Hall, E. L., Lay, K. W., and Tkaczyk, J. E., J. Mater. Res. 9, 2789 (1994).CrossRefGoogle Scholar
25.Parrell, J. A., Dorris, S. E., and Larbalestier, D. C., Physica C 231, 137 (1994).CrossRefGoogle Scholar
26.Parrell, J. A., Polyanskii, A. A., Pashitski, A. E., and Larbalestier, D. C., Supercond. Sci. Technol. 9, 393 (1996).Google Scholar
27.Régi, F. S., Schneck, J., Savary, H., Daguet, C., and Huet, F., IEEE Trans. Appl. Supercond. AS–3, 1190 (1993).CrossRefGoogle Scholar
28.Paulose, P. L., Patil, S., Frank, H., and Guntherodt, G., Physica C 208, 11 (1993).Google Scholar
29.Chong, I., Hiroi, Z., Izumi, M., Shimoyama, J., Nakayama, Y., Kishio, K., Terashima, T., Bando, Y., and Takano, M., Science 276, 770 (1997).CrossRefGoogle Scholar
30.Cai, X. Y., Gurevich, A., Larbalestier, D. C., Kelley, R. J., Onellion, M., Berger, H., and Margaritondo, G., Phys. Rev. B 50, 16774 (1994).Google Scholar
31.Hudáková, N., Plechácek, V., Dordor, P., Flachbart, K., Knizek, K., Kovác, J., and Reiffers, M., Supercond. Sci. Technol. 8, 324 (1995).CrossRefGoogle Scholar
32.Parrell, J. A., Larbalestier, D. C., Riley, G. N. Jr, Li, Q., Parrella, R.D., and Teplitsky, M., Appl. Phys. Lett. 69, 2915 (1996).Google Scholar
33.Parrell, J. A., Larbalestier, D. C., Riley, G. N. Jr, Li, Q., Parrella, R.D., and Teplitsky, M., J. Mater. Res. 12, 2997 (1997).Google Scholar
34.Brauer, D. J., Busch, D., Eujen, R., Glandum, A., and Hudepohl, J., Cryogenics 32, 1052 (1992).CrossRefGoogle Scholar
35.Tetenbaum, M. and Maroni, V.A., Physica C 260, 71 (1996).Google Scholar
36.Edelman, H.S., Parrell, J. A., and Larbalestier, D.C., J. Appl. Phys. 81, 2296 (1997).Google Scholar
37.Anderson, J. W., Parrell, J.A., Polak, M., and Larbalestier, D. C., Appl. Phys. Lett. 71, 3892 (1997).Google Scholar
38.Shibutani, K., Li, Q., Sabatini, R. L., Suenaga, M., Motowidlo, L., and Haldar, P., Appl. Phys. Lett. 63, 3515 (1993).Google Scholar
39.Li, Q., Wiesman, H. J., Suenaga, M., Motowidlo, L., and Haldar, P., Appl. Phys. Lett. 66, 637 (1995).Google Scholar
40.Edelman, H.S., Ph.D. Thesis, University of Wisconsin-Madison (1995).Google Scholar
41.Majewski, P., Supercond. Sci. Technol. 10, 453 (1997).Google Scholar
42.Zhu, Y. and Tafto, J., Phys. Rev. Lett. 76, 443 (1996).CrossRefGoogle Scholar