Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T03:59:03.406Z Has data issue: false hasContentIssue false

Effect of Mo microstructure on the critical volume fraction for conduction in Mo-alumina cermets

Published online by Cambridge University Press:  31 January 2011

J. F. Kelso
Affiliation:
Alcoa Technical Center, Alcoa Center, Pennsylvania 15069
R. R. Higgins
Affiliation:
Alcoa Technical Center, Alcoa Center, Pennsylvania 15069
F. J. Krivda
Affiliation:
Alcoa Technical Center, Alcoa Center, Pennsylvania 15069
Get access

Abstract

The microstructure of Mo in an alumina/frit matrix was found to be dependent on the initial particle sizes of the alumina and Mo powders, the glass content in the matrix ceramic, and the amount of moisture in the firing atmosphere. The Mo microstructure had a significant influence on the critical volume fraction for conductivity in these cermets. Coarser alumina powder, finer Mo powder, and higher glass content promoted coalescence of Mo into conductive networks at lower metal contents. Drier firing atmospheres produced a more coarsened Mo microstructure with a slight decrease in the amount of network contiguity, causing an increase in the amount required for electrical percolation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ogawa, M., Yamasaki, K., Hirano, M., Scmitt, M. A., and Bhattacharyya, B. K., U.S. Patent No. 5 099 388 (1992).Google Scholar
2.Kramer, D. P., White, K., and Kelly, M. D., Ceram. Eng. Sci. Proc. 3 (9–10), 512 (1982).CrossRefGoogle Scholar
3.Glass, S. J., Monroe, S. L., Moore, R., and Pressly, G., Basic Science, Electronics, Glass & Optical Materials, and Nuclear & Environmental Technology Divisions Meeting of the Am. Cer. Soc., New Orleans, Nov. 5–8, 1995.Google Scholar
4.Malliaris, A. and Turner, D. T., J. Appl. Phys. 42 (2), 614 (1971).CrossRefGoogle Scholar
5.McLachlan, D. S., Blaszkiewicz, M., and Newnham, R. E., J. Am. Ceram. Soc. 73 (8), 2187 (1990).CrossRefGoogle Scholar
6.Hsu, W. Y., Holtje, W. G., and Barkley, J. R., J. Mater. Sci., 459 (1988).CrossRefGoogle Scholar
7.Balberg, I., Anderson, C. H., Alexander, S., and Wagner, N., Phys. Rev. B 30 (7), 3933 (1984).CrossRefGoogle Scholar
8.Russ, J. C., Computer Assisted Microscopy: The Measurement and Analysis of Images (North Carolina State Univ. Press, Raleigh, NC, 1988), pp. 723.Google Scholar
9.McLachlan, D. S., J. Phys. C: Solid State Phys. 20, 865 (1987).CrossRefGoogle Scholar
10.Courtney, T. H., Metall. Trans. A 8A, 679 (1977).CrossRefGoogle Scholar
11.Courtney, T. H., Metall. Trans. A 8A, 685 (1977).CrossRefGoogle Scholar
12.Twentyman, M. E., J. Mater. Sci. 10, 765 (1975).CrossRefGoogle Scholar