Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:38:35.194Z Has data issue: false hasContentIssue false

The effect of plasticizer on the shape memory properties of poly(lactide acid)/poly(ethylene glycol) blends

Published online by Cambridge University Press:  31 October 2018

Yijun Guo
Affiliation:
China National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Jing Ma*
Affiliation:
China National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Zirui Lv
Affiliation:
School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Na Zhao
Affiliation:
China National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Lixia Wang
Affiliation:
China National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
Qian Li
Affiliation:
China National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: jimmybear121@pku.edu.cn
Get access

Abstract

Biodegradable poly(lactide acid) (PLA) has been well-studied as a shape memory polymer in recent years, but the brittleness and relatively high Tg limit its applications. In this study, a series of PLA/poly(ethylene glycol) (PEG) blends were manufactured by using the solvent evaporation method. The thermal behaviors, morphology, hydrophilicity, and mechanical properties of the samples with different contents of PEG have been experimentally studied by differential scanning calorimetry, scanning electronic microscopy, water contact angle, dynamic mechanical analysis, and tensile test. Furthermore, the influence of PEG on the shape memory properties under different loading conditions including the stretch strain, recovery temperature, deformation temperature, and tensile rate were explored systematically. Experimental results reveal that introduction of appropriate contents of the plasticizer PEG into the PLA/PEG systems results in the significant improvement of morphology, hydrophilicity, and mechanical properties while the high shape memory properties are still retained.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lai, S-M., Wu, W-L., and Wang, Y-J.: Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J. Polym. Res. 23, 99 (2016).10.1007/s10965-016-0993-6CrossRefGoogle Scholar
Cai, S., Sun, Y-C., Ren, J., and Naguib, H.E.: Toward the low actuation temperature of flexible shape memory polymer composites with room temperature deformability via induced plasticizing effect. J. Mater. Chem. B 5, 8845 (2017).10.1039/C7TB02068FCrossRefGoogle Scholar
Lv, H., Leng, J., Liu, Y., and Du, S.: Shape-memory polymer in response to solution. Adv. Eng. Mater. 10, 592 (2008).10.1002/adem.200800002CrossRefGoogle Scholar
Sabzi, M., Babaahmadi, M., and Rahnama, M.: Thermally and electrically triggered triple-shape memory behavior of poly(vinyl acetate)/poly(lactic acid) due to graphene-induced phase separation. ACS Appl. Mater. Interfaces 9, 24061 (2017).10.1021/acsami.7b02259CrossRefGoogle ScholarPubMed
Khalili, N., Asif, H., and Naguib, H.E.: Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties. Smart Mater. Struct. 27, 055002 (2018).10.1088/1361-665X/aab417CrossRefGoogle Scholar
Xie, H., He, M.J., Deng, X.Y., Du, L., Fan, C.J., Yang, K.K., and Wang, Y.Z.: Design of poly(L-lactide)–poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups. ACS Appl. Mater. Interfaces 8, 9431 (2016).10.1021/acsami.6b00704CrossRefGoogle ScholarPubMed
Kim, B.K.: Shape memory polymers and their future developments. EXPRESS Polym. Lett. 2, 614 (2008).10.3144/expresspolymlett.2008.73CrossRefGoogle Scholar
Xu, W., Wu, S., Balamurugan, G.P., Thompson, M.R., Brandys, F.A., and Nielsen, K.E.: Evaluating shape memory behavior of polymer under deep-drawing conditions. Polym. Test. 62, 295 (2017).10.1016/j.polymertesting.2017.07.009CrossRefGoogle Scholar
Karger-Kocsis, J.: Biodegradable polyester-based shape memory polymers: Concepts of (supra)molecular architecturing. EXPRESS Polym. Lett. 8, 397 (2014).10.3144/expresspolymlett.2014.44CrossRefGoogle Scholar
Senatov, F.S., Zadorozhnyy, M.Y., Niaza, K.V., Medvedev, V.V., Kaloshkin, S.D., Anisimova, N.Y., Kiselevskiy, M.V., and Yang, K-C.: Shape memory effect in 3D-printed scaffolds for self-fitting implants. Eur. Polym. J. 93, 222 (2017).10.1016/j.eurpolymj.2017.06.011CrossRefGoogle Scholar
Zhao, W., Liu, L., Lan, X., Su, B., Leng, J., and Liu, Y.: Adaptive repair device concept with shape memory polymer. Smart Mater. Struct. 26, 025027 (2017).10.1088/1361-665X/aa5595CrossRefGoogle Scholar
Wei, H., Zhang, Q., Yao, Y., Liu, L., Liu, Y., and Leng, J.: Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces 9, 876 (2017).10.1021/acsami.6b12824CrossRefGoogle ScholarPubMed
Carroll, G.T., Lancaster, J.R., Turro, N.J., Koberstein, J.T., and Mammana, A.: Electroless deposition of nickel on photografted polymeric microscale patterns. Macromol. Rapid Commun. 38, 1600564 (2017).10.1002/marc.201600564CrossRefGoogle ScholarPubMed
Tsuji, H.: Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569 (2005).10.1002/mabi.200500062CrossRefGoogle ScholarPubMed
Yakacki, C.M., Shandas R, R., Lanning, C., Rech, B., Eckstein, A., and Gall, K.: Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28, 2255 (2007).10.1016/j.biomaterials.2007.01.030CrossRefGoogle ScholarPubMed
Gremare, A., Guduric, V., Bareille, R., Heroguez, V., Latour, S., L’Heureux, N., Fricain, J.C., Catros, S., and Le Nihouannen, D.: Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res., Part A 106, 887 (2018).10.1002/jbm.a.36289CrossRefGoogle ScholarPubMed
Hwang, T.I., Maharjan, B., Tiwari, A.P., Lee, S., Joshi, M.K., Park, C.H., and Kim, C.S.: Facile fabrication of spongy nanofibrous scaffold for tissue engineering applications. Mater. Lett. 219, 119 (2018).10.1016/j.matlet.2018.02.040CrossRefGoogle Scholar
Wei, K., Peng, Y., Qu, Z., Pei, Y., and Fang, D.: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio. Int. J. Solids Struct. 150, 255 (2018).10.1016/j.ijsolstr.2018.06.018CrossRefGoogle Scholar
Tanzi, M.C., Bozzini, S., Candiani, G., Cigada, A., De Nardo, L., Fare, S., Ganazzoli, F., Gastaldi, D., Levi, M., Metrangolo, P., Migliavacca, F., Osellame, R., Petrini, P., Raffaini, G., Resnati, G., Vena, P., Vesentini, S., and Zunino, P.: Trends in biomedical engineering: Focus on smart bio-materials and drug delivery. J. Appl. Biomater. Biomech. 9, 87 (2011).Google ScholarPubMed
Zhang, X., Geven, M.A., Grijpma, D.W., Peijs, T., and Gautrot, J.E.: Tunable and processable shape memory composites based on degradable polymers. Polymer 122, 323 (2017).10.1016/j.polymer.2017.06.066CrossRefGoogle Scholar
Zhang, W., Chen, L., and Zhang, Y.: Study on polylactide/poly(ether block amide) composite biomaterials and shape-memory effect. Mater. Sci. Forum 610–613, 1312 (2009).10.4028/www.scientific.net/MSF.610-613.1312CrossRefGoogle Scholar
Dogan, S.K., Boyacioglu, S., Kodal, M., Gokce, O., and Ozkoc, G.: Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: Effects of compatibilization. J. Mech. Behav. Biomed. Mater. 71, 349 (2017).10.1016/j.jmbbm.2017.04.001CrossRefGoogle ScholarPubMed
Navarro-Baena, I., Sessini, V., Dominici, F., Torre, L., Kenny, J.M., and Peponi, L.: Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 132, 97 (2016).10.1016/j.polymdegradstab.2016.03.037CrossRefGoogle Scholar
Rasal, R.M., Janorkar, A.V., and Hirt, D.E.: Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338 (2010).10.1016/j.progpolymsci.2009.12.003CrossRefGoogle Scholar
Pillin, I., Montrelay, N., and Grohens, Y.: Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer 47, 4676 (2006).10.1016/j.polymer.2006.04.013CrossRefGoogle Scholar
Choi, K.M., Lim, S.W., Choi, M.C., Han, D.H., and Ha, C.S.: Properties of poly(ethylene glycol)-grafted poly(lactic acid) plasticized with poly(ethylene glycol). Macromol. Res. 22, 1312 (2014).10.1007/s13233-014-2182-yCrossRefGoogle Scholar
Chieng, B.W., Ibrahim, N.A., Wan, M.Z.Y., and Hussein, M.Z.: Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. J. Appl. Polym. Sci. 130, 4576 (2013).Google Scholar
Bijarimi, M., Ahmad, S., Rasid, R., Khushairi, M.A., and Zakir, M.: Poly(lactic acid)/poly(ethylene glycol) blends: Mechanical, thermal and morphological properties. AIP Conference Proceedings 1727, 020002 (2016).10.1063/1.4945957CrossRefGoogle Scholar
Barmouz, M. and Hossein Behravesh, A.: Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: Analytical and experimental assessment. Composites, Part A 101, 160 (2017).10.1016/j.compositesa.2017.06.014CrossRefGoogle Scholar
Liu, W., Zhang, R., Huang, M., Dong, X., Xu, W., Ray, N., and Zhu, J.: Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104, 115 (2016).10.1016/j.polymer.2016.09.079CrossRefGoogle Scholar
Shen, T., Lu, M., Zhou, D., and Liang, L.: Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly(lactic acid)/poly(ethylene glycol) blends. Iran. Polym. J. 21, 317 (2012).10.1007/s13726-012-0031-4CrossRefGoogle Scholar
Goryczka, T. and Szaraniec, B.: Characterization of polylactide layer deposited on Ni–Ti shape memory. J. Mater. Eng. Perform. 23, 2682 (2014).10.1007/s11665-014-1038-0CrossRefGoogle Scholar
Phaechamud, T. and Chitrattha, S.: Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane. Mater. Sci. Eng., C 61, 744 (2016).CrossRefGoogle ScholarPubMed
Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., and Wintermantel, E.: Thermal and mechanical properties of plasticized poly(l-lactic acid). J. Appl. Polym. Sci. 90, 1731 (2003).CrossRefGoogle Scholar
Cai, N., Dai, Q., Wang, Z., Luo, X., Xue, Y., and Yu, F.: Preparation and properties of nanodiamond/poly(lactic acid) composite nanofiber scaffolds. Fibers Polym. 15, 2544 (2015).CrossRefGoogle Scholar