Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:55:09.616Z Has data issue: false hasContentIssue false

The effect of POSS-based block copolymer as compatibilizer on POSS/epoxy composites

Published online by Cambridge University Press:  28 January 2015

Yiting Xu*
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
Cong Li
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
Min Chen
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
Jianjie Xie
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
Ying Cao
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
Yuanming Deng
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
Conghui Yuan
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
Lizong Dai*
Affiliation:
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, China
*
a)Address all correspondence to these authors. e-mail: xyting@xmu.edu.cn
Get access

Abstract

In this study, a novel hybrid block copolymer containing POSS (BCP), poly(methacrylisobutyl-POSS)-b-poly(methylmethacrylate) (PMAiBuPOSS-b-PMMA) was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The structure and molecular weight were characterized via 1H NMR and GPC. BCP was creatively used as the compatibilizer to overcome the bad compatibility of epoxy and POSS in their blend system. SEM and dynamic mechanical thermal analyses (DMTA) were used to observe the surface morphology and thermal–mechanical behaviors of the resultant products. We found that the amount of microaggregation domains of POSS decreased, while the nano ones increased, when BCP content increased. All the aggregation domains were distributed in epoxy matrix uniformly at nanoscale with the addition of 10 phr BCP and 5 phr POSS monomers. The results indicated that BCP could effectively improve the compatibility between epoxy resin and POSS owing to its amphiphilicity in DGEBA. The fracture behavior of products transformed from brittle fracture to ductile fracture gradually with the increase of BCP, whereas the Tg and E′ decreased.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Linda S. Schadler

References

REFERENCES

Kuo, S-W. and Chang, F-C.: POSS related polymer nanocomposites. Prog. Polym. Sci. 36(12), 1649 (2011).Google Scholar
Fu, B.X., Gelfer, M.Y., Hsiao, B.S., Phillips, S., Viers, B., Blanski, R., and Ruth, P.: Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 44(5), 1499 (2003).CrossRefGoogle Scholar
Lee, Y-J., Kuo, S-W., Huang, W-J., Lee, H-Y., and Chang, F-C.: Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. J. Polym. Sci., Part B: Polym. Phys. 42(6), 1127 (2004).CrossRefGoogle Scholar
Cozza, E.S., Monticelli, O., and Marsano, E.: Electrospinning: A novel method to incorporate POSS into a polymer matrix. Macromol. Mater. Eng. 295(9), 791 (2010).CrossRefGoogle Scholar
Kopesky, E.T., Haddad, T.S., Cohen, R.E., and McKinley, G.H.: Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37(24), 8992 (2004).CrossRefGoogle Scholar
Yen, Y-C., Ye, Y-S., Cheng, C-C., Chen, H-M., Sheu, H-S., and Chang, F-C.: Effect of LiClO4 on the thermal and morphological properties of organic/inorganic polymer hybrids. Polymer 49(17), 3625 (2008).CrossRefGoogle Scholar
Shibata, M., Horie, R., and Yoneta, W.: Intermolecular interaction of supramolecular organic–inorganic hybrid composites of sulfonated polystyrene and oligomeric silsesquioxane possessing pyridyl groups. Polymer 51(24), 5764 (2010).CrossRefGoogle Scholar
Sheen, Y-C., Lu, C-H., Huang, C-F., Kuo, S-W., and Chang, F-C.: Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49(18), 4017 (2008).CrossRefGoogle Scholar
Shockey, E.G., Bolf, A.G., Jones, P.F., Schwab, J.J., Chaffee, K.P., Haddad, T.S., and Lichtenhan, J.D.: Functionalized polyhedral oligosilsesquioxane (POSS) macromers: New graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS–siloxane triblocks. Appl. Organomet. Chem. 13(4), 311 (1999).3.0.CO;2-1>CrossRefGoogle Scholar
Haddad, T., Viers, B., and Phillips, S.: Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. J. Inorg. Organomet. Polym. 11(3), 155 (2001).Google Scholar
Mather, P.T., Jeon, H.G., Romo-Uribe, A., Haddad, T.S., and Lichtenhan, J.D.: Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32(4), 1194 (1999).CrossRefGoogle Scholar
Wright, M.E., Petteys, B.J., Guenthner, A.J., Fallis, S., Yandek, G.R., Tomczak, S.J., Minton, T.K., and Brunsvold, A.: Chemical modification of fluorinated polyimides: New thermally curing hybrid polymers with POSS. Macromolecules 39(14), 4710 (2006).CrossRefGoogle Scholar
Choi, J., Harcup, J., Yee, A.F., Zhu, Q., and Laine, R.M.: Organic/inorganic hybrid composites from cubic silsesquioxanes. J. Am. Chem. Soc. 123(46), 11420 (2001).Google Scholar
Wu, S., Hayakawa, T., Kakimoto, M-A., and Oikawa, H.: Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules 41(10), 3481 (2008).CrossRefGoogle Scholar
Wright, M.E., Schorzman, D.A., Feher, F.J., and Jin, R-Z.: Synthesis and thermal curing of aryl-ethynyl-terminated coPOSS imide oligomers: New inorganic/organic hybrid resins. Chem. Mater. 15(1), 264 (2002).CrossRefGoogle Scholar
Liu, Y.L., Hsiue, G.H., Lee, R.H., and Chiu, Y.S.: Phosphorus‐containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents. J. Appl. Polym. Sci. 63(7), 895 (1997).3.0.CO;2-L>CrossRefGoogle Scholar
Liu, X., Xin, W., and Zhang, J.: Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresour. Technol. 101(7), 2520 (2010).CrossRefGoogle ScholarPubMed
Hodgkin, J., Simon, G., and Varley, R.: Thermoplastic toughening of epoxy resins: A critical review. Polym. Adv. Technol. 9(1), 3 (1998).3.0.CO;2-I>CrossRefGoogle Scholar
Hourston, D. and Lane, J.: The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends. Polymer 33(7), 1379 (1992).CrossRefGoogle Scholar
Bauer, B.J., Liu, D.W., Jackson, C.L., and Barnes, J.D.: Epoxy/SiO2 interpenetrating polymer networks. Polym. Adv. Technol. 7(4), 333 (1996).3.0.CO;2-O>CrossRefGoogle Scholar
Hsieh, K. and Han, J.: Graft interpenetrating polymer networks of polyurethane and epoxy. I. Mechanical behavior. J. Polym. Sci., Part B: Polym. Phys. 28(5), 623 (1990).CrossRefGoogle Scholar
Rosso, P., Ye, L., Friedrich, K., and Sprenger, S.: A toughened epoxy resin by silica nanoparticle reinforcement. J. Appl. Polym. Sci. 100(3), 1849 (2006).CrossRefGoogle Scholar
Johnsen, B., Kinloch, A., Mohammed, R., Taylor, A., and Sprenger, S.: Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2), 530 (2007).Google Scholar
Pearson, R.A. and Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies. J. Mater. Sci. 21(7), 2475 (1986).CrossRefGoogle Scholar
Ni, Y. and Zheng, S.: Nanostructured thermosets from epoxy resin and an organic–inorganic amphiphile. Macromolecules 40(19), 7009 (2007).CrossRefGoogle Scholar
Chiu, Y-C., Riang, L., Chou, I.C., Ma, C-C.M., Chiang, C-L., and Yang, C-C.: The POSS side chain epoxy nanocomposite: Synthesis and thermal properties. J. Polym. Sci., Part B: Polym. Phys. 48(6), 643 (2010).Google Scholar
Wang, Y-Z., Chen, W-Y., Yang, C-C., Lin, C-L., and Chang, F-C.: Novel epoxy nanocomposite of low Dk introduced fluorine-containing POSS structure. J. Polym. Sci., Part B: Polym. Phys. 45(4), 502 (2007).CrossRefGoogle Scholar
Zhang, Z., Liang, G., Wang, J., and Ren, P.: Epoxy/POSS organic–inorganic hybrids: Viscoelastic, mechanical properties and micromorphologies. Polym. Compos. 28(2), 175 (2007).Google Scholar
Fu, J., Shi, L., Chen, Y., Yuan, S., Wu, J., Liang, X., and Zhong, Q.: Epoxy nanocomposites containing mercaptopropyl polyhedral oligomeric silsesquioxane: Morphology, thermal properties, and toughening mechanism. J. Appl. Polym. Sci. 109(1), 340 (2008).Google Scholar
Wang, X., Hu, Y., Song, L., Xing, W., and Lu, H.: Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J. Polym. Sci., Part B: Polym. Phys. 48(6), 693 (2010).Google Scholar
Deng, Y., Bernard, J., Alcouffe, P., Galy, J., Dai, L., and Gérard, J-F.: Nanostructured hybrid polymer networks from in situ self-assembly of RAFT-synthesized POSS-based block copolymers. J. Polym. Sci., Part A: Polym. Chem. 49(20), 4343 (2011).CrossRefGoogle Scholar
Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le, T.P.T., Mayadunne, R.T.A., Meijs, G.F., Moad, C.L., Moad, G., Rizzardo, E., and Thang, S.H.: Living free-radical polymerization by reversible addition−fragmentation chain transfer: The RAFT process. Macromolecules 31(16), 5559 (1998).CrossRefGoogle Scholar
Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., and Pascault, J.P.: ABC triblock copolymers/epoxy−diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 36(1), 118 (2002).CrossRefGoogle Scholar
Maeda, R., Hayakawa, T., Tokita, M., Kikuchi, R., Kouki, J., Kakimoto, M-a., and Urushibata, H.: Double liquid crystalline side-chain type block copolymers for hierarchically ordered nanostructures: Synthesis and morphologies in the bulk and thin film. React. Funct. Polym. 69(7), 519 (2009).Google Scholar
Verchère, D., Sautereau, H., Pascault, J.P., Moschiar, S.M., Riccardi, C.C., and Williams, R.J.J.: Miscibility of epoxy monomers with carboxyl-terminated butadiene-acrylonitrile random copolymers. Polymer 30(1), 107 (1989).CrossRefGoogle Scholar
Jaffrennou, B., Portal, J., Méchin, F., and Pascault, J-P.: Nanostructured poly(urethane)s and poly(urethane-urea)s from reactive solutions of poly[styrene-b-butadiene-b-(methyl methacrylate)]-triblock copolymers. Eur. Polym. J. 44(11), 3439 (2008).Google Scholar
Ritzenthaler, S., Court, F., David, L., Girard-Reydet, E., Leibler, L., and Pascault, J.P.: ABC triblock copolymers/epoxy−diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 35(16), 6245 (2002).CrossRefGoogle Scholar
Liu, H., Zheng, S., and Nie, K.: Morphology and thermomechanical properties of organic–inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 38(12), 5088 (2005).Google Scholar
Zhang, D. and Jia, D.: Toughness and strength improvement of diglycidyl ether of bisphenol-A by low viscosity liquid hyperbranched epoxy resin. J. Appl. Polym. Sci. 101(4), 2504 (2006).CrossRefGoogle Scholar
Jones, I., Zhou, Y., Jeelani, S., and Mabry, J.: Effect of polyhedral-oligomeric-sil-sesquioxanes on thermal and mechanical behavior of SC-15 epoxy. eXPRESS Polym. Lett. 2(7), 494 (2008).CrossRefGoogle Scholar
Remiro, P.M., Marieta, C., Riccardi, C.C., and Mondragon, I.: Influence of curing conditions on the morphologies of a PMMA-modified epoxy matrix. Polymer 42(25), 09909 (2001).CrossRefGoogle Scholar
Supplementary material: File

Xu et al. supplementary material

Supplementary figures

Download Xu et al. supplementary material(File)
File 30.2 KB