Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Tomoshige, Ryuichi
Murayama, Akio
and
Matsushita, Toru
1997.
Production of TiB2–TiN Composites by Combustion Synthesis and Their Properties.
Journal of the American Ceramic Society,
Vol. 80,
Issue. 3,
p.
761.
Willis, P.E.
Welham, N.J.
and
Kerr, A.
1998.
Ambient temperature formation of an alumina-titanium carbide-metal ceramic.
Journal of the European Ceramic Society,
Vol. 18,
Issue. 6,
p.
701.
Welham, Nicholas J.
Kerr, Tony
and
Willis, Paul E.
1999.
Ambient‐Temperature Mechanochemical Formation of Titanium Nitride‐Alumina Composites from TiO2 and FeTiO3.
Journal of the American Ceramic Society,
Vol. 82,
Issue. 9,
p.
2332.
Mishra (Pathak), S. K.
Das, S. K.
Ray, A. K.
and
Ramchandrarao, P.
1999.
Effect of nickel on sintering of self-propagating high-temperature synthesis produced titanium carbide.
Journal of Materials Research,
Vol. 14,
Issue. 9,
p.
3594.
Xia, Tian D.
Munir, Zuhair A.
Tang, Yan L.
Zhao, Wen J.
and
Wang, Tian M.
2000.
Structure Formation in the Combustion Synthesis of Al2O3–TiC Composites.
Journal of the American Ceramic Society,
Vol. 83,
Issue. 3,
p.
507.
Xia, Tian D.
Liu, Tian Z.
Zhao, Wen J.
Munir, Zuhair A.
and
Wang, Tian M.
2000.
Photo- and Cathodoluminescence of the Combustion-synthesized Al2O3–TiB2 Composites.
Journal of Materials Research,
Vol. 15,
Issue. 7,
p.
1622.
ASHITANI, Tatsuya
TOMOSHIGE, Ryuichi
UENO, Tomoko
and
SAKAI, Kokki
2003.
Simultaneous Synthesis of Titanium Carbide-Alumina from Woody Materials by Self-Propagating High Temperature Synthesis.
Journal of the Ceramic Society of Japan,
Vol. 111,
Issue. 1294,
p.
372.
Kaga, Hisashi
and
Koc, Rasit
2007.
Formation of Al2O3–TiC Composite Nano‐Particles Synthesized from Carbon‐Coated Precursors.
Journal of the American Ceramic Society,
Vol. 90,
Issue. 2,
p.
407.
Amel-Farzad, H.
Vahdati-Khaki, J.
Haerian, A.
and
Youssefi, A.
2008.
Combustion wave stability in diluted TiO2/Al/C system in atmospheric air.
Solid State Sciences,
Vol. 10,
Issue. 12,
p.
1958.
Kaga, Hisashi
and
Koc, Rasit
2009.
Progress in Nanotechnology.
p.
97.
Kobyakov, V. P.
Barinova, T. V.
Ratnikov, V. I.
and
Borovinskaya, I. P.
2009.
Microstructure and composition of SHS products of powder multicomponent oxide mixtures with aluminum and graphite.
Inorganic Materials,
Vol. 45,
Issue. 6,
p.
694.
Kobyakov, V. P.
Barinova, T. V.
and
Ratnikov, V. I.
2009.
Self-propagating high-temperature synthesis of Al2O3/TiC-based ceramic materials.
Inorganic Materials,
Vol. 45,
Issue. 2,
p.
211.
Kobyakov, V. P.
Barinova, T. V.
and
Sichinava, M. A.
2011.
Phase relations in the TiO2-CsNO3 system between 550 and 1140 K.
Inorganic Materials,
Vol. 47,
Issue. 3,
p.
290.
Besisa, D. H. A.
Zaki, Z. I.
Amin, A. M. M.
Ahmed, Y. M. Z.
and
Ewais, E. M. M.
2020.
Influence of hardening additives on the characteristics of TiC‒Al<sub>2</sub>O<sub>3</sub> ceramic composite tribological applications, obtained by SHS.
NOVYE OGNEUPORY (NEW REFRACTORIES),
p.
47.
Besisa, D. H. A.
Zaki, Z. I.
Amin, A. M. M.
Ahmed, Y. M. Z.
and
Ewais, E. M. M.
2021.
Influence of Hardening Additives on the Characteristics of the Tribological TiC–Al2O3 Ceramic Composite Obtained by SHS.
Refractories and Industrial Ceramics,
Vol. 61,
Issue. 5,
p.
528.
Aydinyan, Sofiya
Kharatyan, Suren
and
Hussainova, Irina
2022.
The Influence of Thermal Dilution on the Microstructure Evolution of Some Combustion-Synthesized Refractory Ceramic Composites.
Crystals,
Vol. 12,
Issue. 1,
p.
59.