Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T15:21:12.775Z Has data issue: false hasContentIssue false

Effect of substituents with different valences on antiferroelectric stability of antiferroelectric lead zirconate ceramics

Published online by Cambridge University Press:  31 January 2011

Qi Tan
Affiliation:
Johnson Matthey Electronics, 15128 East Euclid Avenue, Spokane, Washington 99216
Z. Xu
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
Dwight Viehland
Affiliation:
Naval Undersea Warfare Center, Newport, Rhode Island 02841
Get access

Abstract

The effect of lower valent substituents on the stability of the antiferroelectric phase of lead zirconate was studied by dielectric spectroscopy, Sawyer–Tower polarization methods, and electron diffraction techniques. The stability of an intermediate ferroelectric phase region was found to be enhanced with increasing lower valent substitution concentration. The influences of substituents of different ionic size and valence on the stabilization of the intermediate ferroelectric phase were differentiated. In general, lower valent substituents, such as K+ and Fe3+ affected antiferroelectric phase stability more significantly than higher valent ones.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shirane, G., Sawaguchi, E., and Takagi, Y., Phys. Rev. 84, 476 (1951).CrossRefGoogle Scholar
2.Robert, S., J. Am. Ceram. Soc. 33, 63 (1950).CrossRefGoogle Scholar
3.Robert, S., Phys. Rev. 83, 1078 (1951).CrossRefGoogle Scholar
4.Shirane, G. and Suzuki, K., J. Phys. Soc. Jpn. 7, 333 (1952).CrossRefGoogle Scholar
5.Berlincourt, D., Krueger, H.H.A, and Jaffe, B., J. Phys. Chem. Solids 25, 659 (1964).CrossRefGoogle Scholar
6.Shirane, G. and Pepinski, R., Phys. Rev. 91, 812 (1953).CrossRefGoogle Scholar
7.Viehland, D., Forst, D., Xu, Z., and Li, J.F., J. Appl. Phys. 75, 4137 (1996).CrossRefGoogle Scholar
8.Park, S-E., Pan, M-J., Markowski, K., Yoshikawa, S., and Cross, L.E., J. Appl. Phys. 82, 1798 (1997).CrossRefGoogle Scholar
9.Kumada, A., Toda, G., and Otomo, Y., Ferroelectrics 7, 367 (1974).CrossRefGoogle Scholar
10.Furuta, K. and Uchino, K., Adv. Ceram. Mater. 1, 61 (1986).Google Scholar
11.Xu, Z., Dai, X.H., and Viehland, D., Phys. Rev. B51, 6261 (1995);CrossRefGoogle Scholar
12.Xu, Z., Dai, X.H., Viehland, D., and Payne, D.A., J. Am. Ceram. Soc. 78, 2220 (1995).CrossRefGoogle Scholar
13.Krainik, N.N., Zh. Tekhn. Fiz 28, 525 (1958); Sov. Phys. Tech. Phys. 3, 493 (1958).Google Scholar
14.Troccaz, M., Gonnard, P., Fetiveau, Y., Eyraud, L., and Grange, G., Ferroelectrics 14, 679 (1976).CrossRefGoogle Scholar
15.Gonnard, P. and Troccaz, M., J. Solid State Chem. 23, 321 (1978).CrossRefGoogle Scholar
16.Bauer, F., Vollrath, K., Eyraud, L., and Fetiveau, Y., in Ferroelectric energy conversion with PZT ceramics under shock loading, IEEE Ferroelectric subcommittee Fall Meeting (The American Ceramic Society, Dallas, TX, 1976).Google Scholar
17.Tan, Q., Xu, Z., Li, J.F., and Viehland, D., J. Appl. Phys. 80, 5866 (1996).CrossRefGoogle Scholar
18.Dai, X.H., Xu, Z., and Viehland, D., Philos. Mag. B70, 33 (1994).CrossRefGoogle Scholar
19.Dai, X.H., Xu, Z., and Viehland, D., J. Appl. Phys. 77, 5088 (1995).Google Scholar
20.Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
21.Shirane, G., Phys. Rev. 86, 219 (1952).CrossRefGoogle Scholar