Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T19:37:46.307Z Has data issue: false hasContentIssue false

Effect of substrate orientation on the crystal quality and surface roughness of Nb-doped TiO2 epitaxial films on TiO2

Published online by Cambridge University Press:  31 January 2011

Y. Gao
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, P.O. Box 999, MS K2–12, Richland, Washington 99352
S. A. Chambers
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, P.O. Box 999, MS K2–12, Richland, Washington 99352
Get access

Abstract

We have grown Nb-doped TiO2 epitaxial films on (100) and (110)-oriented TiO2 rutile substrates by molecular beam epitaxy. Nb substitutionally incorporates at cation sites in the rutile lattice, forming NbxTi1−xO2 solid solutions. However, the crystal quality and surface roughness of the films depend strongly on the substrate orientation. Surface roughening and defect formation occur at lower values of x on (100) than on (110). This result is due to anisotropic changes in the metal-oxygen bond lengths within the rutile structure in going from TiO2 to NbO2; there are 1% and 12% changes in the metal atom to octahedron-base oxygen and metal atom to octahedron-vertex oxygen bond lengths, respectively. Every metal atom in the (100) growth surface has in-plane components of the 12% mismatch. However, only half of the metal atoms in the (110) growth plane have such components. Thus, there is substantially larger in-plane lattice mismatch when the growth surface is (100) compared to (110), resulting in surface roughening and formation of defects at a lower doping level for (100)-oriented NbxTi1−xO2 epitaxial films.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A., and Honda, K., Nature (London) 238, 37 (1972).CrossRefGoogle Scholar
2.Henrich, V. E., and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994).Google Scholar
3.Bond, G. C. and Burch, R., in Catalysis 6, edited by Bond, G. C. and Webb, G. (Royal Soc. Chem., London, 1983), p. 27.CrossRefGoogle Scholar
4.Henrich, V. E. and Kurtz, R. L., Phys. Rev. B. 23, 6280 (1981).CrossRefGoogle Scholar
5.Murray, P. W., Leibsle, F. M., Muryn, C. A., Fisher, H. J., Flipse, C. F. J., and Thornton, G., Phys. Rev. Lett. 72, 689 (1994).CrossRefGoogle Scholar
6.Ramamoorthy, M., King-Smith, R. D., and Venderbilt, D., Phys. Rev. B 49, 7709 (1994).CrossRefGoogle Scholar
7.Sander, M. and Engel, T., Surf. Sci. Lett. 302, L263 (1994).CrossRefGoogle Scholar
8.Grossman, B., and Piercy, P., Phys. Rev. Lett. 74, 4487 (1995).CrossRefGoogle Scholar
9.Smith, K. E. and Henrich, V. E., Surf. Sci. 217, 445 (1989).CrossRefGoogle Scholar
10.Henderson, M. A., Surf. Sci. 319, 315 (1994).CrossRefGoogle Scholar
11.Linsebigler, A. L., Lu, G. Q., and Yates, J.T. Jr., Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
12.Lee, W., Do, Y. R., Dwight, K., and Wold, A., Mater. Res. Bull. 28, 1127 (1993).CrossRefGoogle Scholar
13.Do, Y. R., Lee, W., Dwight, K., and Wold, A., J. Solid State Chem. 108, 198 (1994).CrossRefGoogle Scholar
14.Okazaki, S. and Okuyama, T., Bull. Chem. Soc. Jpn. 65, 914 (1983).Google Scholar
15.Matsumoto, Y., Shimizu, T., Toyoda, A., and Sato, E., J. Phys. Chem. 86, 3581 (1982).CrossRefGoogle Scholar
16.Cui, H., Dwight, K., Soled, S., and Wold, A., J. Solid State Chem. 115, 187 (1995).CrossRefGoogle Scholar
17.Hyde, B. G. and Andersson, S., Inorganic Crystal Structures (John Wiley / Sons, New York, 1989).Google Scholar
18.Wyckoff, R. W. G., Crystal Structures, 2nd ed. (John Wiley / Sons, New York, 1963), Vol. 1.Google Scholar
19.Cheetham, A. K. and Rao, C. N. R., Acta Crystallogr. Sect. B 32, 1579 (1976).CrossRefGoogle Scholar
20.CRC Handbook of Chemistry and Physics, edited by Weast, R. C., Astle, M. J., and Beyer, W. H., 66th ed. (CRC Press, Boca Raton, FL, 1986).Google Scholar
21.Gao, Y., Liang, Y., and Chambers, S. A., Surf. Sci. (1996, in press).Google Scholar
22.Thevuthasan, S., unpublished result.Google Scholar
23.Chambers, S. A., Tran, T. T., and Hileman, T. A., J. Mater. Res. 9, 2944 (1994).CrossRefGoogle Scholar