Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T20:36:56.994Z Has data issue: false hasContentIssue false

Effect of substrate surface orientation on the wettability and adhesion of α–Al2O3 single crystals by molten Cu

Published online by Cambridge University Press:  01 April 2005

Ping Shen*
Affiliation:
Joining and Welding Research Institute, Osaka University, Osaka, 567-0047, Japan
Hidetoshi Fujii
Affiliation:
Joining and Welding Research Institute, Osaka University, Osaka, 567-0047, Japan
Kiyoshi Nogi
Affiliation:
Joining and Welding Research Institute, Osaka University, Osaka, 567-0047, Japan
*
a) Address, all correspondence to this author. e-mail: shp1972@126.com
Get access

Abstract

Wetting of α–Al2O3 single crystals with different crystallographic orientations, R(0112), A(1120), and C(0001), by molten Cu at 1423–1673 K was studied using an improved sessile drop method mainly in a reducing Ar–3%H2 atmosphere to determine the effect of the alumina surface orientation on the wettability and adhesion in this system. The contact angles were generally in the range of 110–117°, and the work of adhesion was between 0.7 and 0.8 J m−2, without a significant dependence on the alumina surface orientation. This result was explained by the possibly close bond strengths of Cu–O at the oxygen-terminated Cu/[R(0112)] and Cu/[A(1120)] α-alumina interfaces and Cu–Al at the Al-terminated (or Al-rich) Cu/[C(0001)] α-alumina interface under high-temperature and low oxygen partial pressure conditions. Additionally, the effects of alumina surface dissolution in the region around the triple junction and H2 in the atmosphere were examined. Some reasons for the controversy on the bonding nature at the Cu/α–Al2O3 interfaces, i.e., Cu–O or Cu–Al on earth, present in the literature were also addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwartz, B.: Microelectronics packaging II. Am. Ceram. Soc. Bull. 63, 577 (1984).Google Scholar
2. Wu, M.C. and Goodman, D.W.: Particulate Cu on ordered Al2O3: Reactions with nitric oxide and carbon monoxide. J. Phys. Chem. 98, 9874 (1994).CrossRefGoogle Scholar
3. Goodman, D.W.: Model studies in catalysis using surface science probes. Chem. Rev. 95, 523 (1995).CrossRefGoogle Scholar
4. Allen, B.C. and Kingery, W.D.: Surface tension and contact angles in some liquid metal-solid ceramic systems at elevated temperatures. Trans. Metall. Soc. AIME 215, 30 (1959).Google Scholar
5. Chaklader, A.C.D., Armstrong, A.M. and Misra, S.K.: Interface reactions between metals and ceramics: IV. Wetting of sapphire by liquid copper-oxygen alloys. J. Am. Ceram. Soc. 51, 630 (1968).CrossRefGoogle Scholar
6. O’Brien, T.E. and Chaklader, A.C.D.: Effect of oxygen on the reaction between copper and sapphire. J. Am. Ceram. Soc. 57, 329 (1974).CrossRefGoogle Scholar
7. Mehrotra, S.P. and Chaklader, A.C.D.: Interfacial phenomena between molten metals and sapphire substrate. Metall. Trans. B 16B, 567 (1985).CrossRefGoogle Scholar
8. Ownby, P.D. and Liu, J.: Surface energy of liquid copper and single-crystal sapphire and the wetting behavior of copper on sapphire. J. Adhes. Sci. Technol. 2, 255 (1988).CrossRefGoogle Scholar
9. Nogi, K., Oishi, K. and Ogino, K.: Wettability of solid oxides by liquid pure metals. Mater. Trans. JIM 30, 137 (1989).CrossRefGoogle Scholar
10. Matsumoto, H., Locatelli, M.R., Nakashima, K., Glaeser, A.M. and Mori, K.: Wettability of Al2O3 by liquid Cu as influenced by additives and partial transient liquid-phase bonding of Al2O3 . Mater. Trans. JIM 36, 555 (1995).CrossRefGoogle Scholar
11. Meier, A., Baldwin, M.D., Chidambaram, P.R. and Edwards, G.R.: The effect of large oxygen additions on the wettability and adhesion of copper-oxygen alloys on polycrystalline alumina. Mater. Sci. Eng. A 196, 111 (1995).CrossRefGoogle Scholar
12. Chidambaram, P.D., Meier, A. and Edwards, G.R.: The nature of interfacial phenomena at copper-titanium/alumina and copper-oxygen/alumina interfaces. Mater. Sci. Eng. A 206, 249 (1996).CrossRefGoogle Scholar
13. Ghetta, V., Fouletier, J. and Chatain, D.: Oxygen adsorption isotherms at the surfaces of liquid Cu and Au-Cu alloys and their interfaces with Al2O3 detected by wetting experiments. Acta Mater. 44, 1927 (1996).CrossRefGoogle Scholar
14. Chatain, D., Ghetta, V. and Fouletier, J.: Metal/oxide interfaces: Chemistry, wetting, adhesion, and oxygen activity, in Proceedings of Ceramic Microstructures ’96: Control at the Atomic Level, edited by Tomsia, A.P. and Glaeser, A.M. (Plenum, New York, 1998), p. 349.CrossRefGoogle Scholar
15. Saiz, E., Tomsia, A.P. and Cannon, R.M.: Wetting and work of adhesion in metal/oxide system, in Proceedings of Ceramic Microstructures ’96: Control at the Atomic Level, edited by Tomsia, A.P. and Glaeser, A.M. (Plenum, New York, 1998), p. 65.CrossRefGoogle Scholar
16. Saiz, E., Tomsia, A.P. and Cannon, R.M.: Ridging effects on wetting and spreading of liquids on solids. Acta Mater. 46, 2349 (1998).CrossRefGoogle Scholar
17. Diemer, M., Neubrand, A., Trumble, K.P. and Rödel, J.: Influence of oxygen partial pressure and oxygen content on the wettability in the copper-oxygen-alumina system. J. Am. Ceram. Soc. 82, 2825 (1999).CrossRefGoogle Scholar
18. Vikner, P.: DEA report, LTPCM, INP Grenoble, France, 1993. Reported in N. Eustathopoulos, M.G. Nicholas and B. Drevet, Wettability at High Temperatures (Elsevier Science, Oxford, U.K., 1999), pp. 205207.Google Scholar
19. Alber, U., Müllejans, H. and Rühle, M.: Wetting of copper on α–Al2O3 surfaces depending on the orientation and oxygen partial pressure. Micron. 30, 101 (1999).CrossRefGoogle Scholar
20. Shen, P., Fujii, H., Matsumoto, T. and Nogi, K.: The influence of surface structure on wetting of α–Al2O3 by Al in a reduced atmosphere. Acta Mater. 51, 4897 (2003).CrossRefGoogle Scholar
21. Shen, P., Fujii, H., Matsumoto, T. and Nogi, K.: Surface orientation and wetting phenomena in Si/α-alumina system at 1723 K. J. Am. Ceram. Soc. (in press).Google Scholar
22. Fujii, H., Nakae, H. and Okada, K.: Interfacial reaction wetting in the boron nitride/molten aluminum system. Acta Metall. Mater. 41, 2963 (1993).CrossRefGoogle Scholar
23. Shen, P., Fujii, H., Matsumoto, T. and Nogi, K.: Critical factors affecting the wettability of α–Al2O3 by molten aluminum. J. Am. Ceram. Soc. 87(11), 2151 (2004).CrossRefGoogle Scholar
24. Gallois, B. and Lupis, C.H.P.: Effect of oxygen on the surface tension of liquid copper. Metall. Trans. B. 12B, 549 (1981).CrossRefGoogle Scholar
25. Morita, Z. and Kasama, A.: Surface tension of liquid copper in dilute oxygen concentrations. J. Jpn. Inst. Met. 40, 787 (1976).CrossRefGoogle Scholar
26. Kasama, A., Iida, T. and Morita, Z.: Temperature dependence of surface tension of liquid pure metals. J. Jpn. Inst. Met. 40, 1030 (1976).CrossRefGoogle Scholar
27. Portevin, A. and Bastien, P.: C. R. Acad. Sci. 202, 1072 (1937).Google Scholar
28. Budnikov, P.P. and Xaritonov, F.: Izv. Akad. Nauk SSSR, Neorg. Mat. 3(3), 496 1967. Reported in S.H. Overbury, P.A. Bertrand, and G.A. Somorjai: The surface composition of binary systems: Prediction of surface phase diagrams of solid solutions. Chem. Rev. 75(5), 547 (1975).Google Scholar
29. Kingery, W.D.: Metal-ceramic interactions: IV. Absolute measurement of metal-ceramic interfacial energy and the interfacial adsorption of silicon from iron-silicon alloys. J. Am. Ceram. Soc. 37(2), 42 (1954).CrossRefGoogle Scholar
30. Rhee, S.K.: Critical surface energies of Al2O3 and graphite. J. Am. Ceram. Soc. 55(6), 300 (1972).CrossRefGoogle Scholar
31. Nikolopoulos, P.: Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3–Sn, Al2O3–Co systems. J. Mater. Sci. 20, 3993 (1985).CrossRefGoogle Scholar
32. Levi, G. and Kaplan, W.D.: Aluminum-alumina interface morphology and thermodynamic from dewetting experiments. Acta Mater. 51, 2793 (2003).CrossRefGoogle Scholar
33. Choi, J-H., Kim, D-Y., Hockey, B.J., Wiederhorn, S.M., Handwerker, C.A., Blendell, J.E., Carter, W.C. and Roosen, A.R.: Equilibrium shape of internal cavities in sapphire. J. Am. Ceram. Soc. 80(1), 62 (1997).CrossRefGoogle Scholar
34. Kitayama, M. and Glaeser, A.M.: The Wulff shape of alumina: III. Undoped alumina. J. Am. Ceram. Soc. 85(3), 611 (2002).CrossRefGoogle Scholar
35. Tasker, P.W.: Surface of magnesia and alumina, in Advance in Ceramics : Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W.D. (The American Ceramic Society, Columbus, OH, 1984), p. 176.Google Scholar
36. Mackrodt, W.C., Davey, R.J. and Black, S.N.: The morphology of α–Al2O3 and α–Fe2O3: The importance of surface relaxation. J. Cryst. Growth 80, 441 (1987).CrossRefGoogle Scholar
37. Blonski, S. and Garofalini, S.H.: Molecular dynamics simulations of α-alumina and γ-alumina surfaces. Surf. Sci. 295, 263 (1993).CrossRefGoogle Scholar
38. Manassidis, I. and Gillan, M.J.: Structure and energetics of alumina surfaces calculated from first principles. J. Am. Ceram. Soc. 77, 335 (1994).CrossRefGoogle Scholar
39. Gay, D.H. and Rohl, A.L.: Marvin: A new computer code for studying surfaces and interfaces and its application to calculating the crystal morphologies of corundum and zircon. J. Chem. Soc., Faraday Trans. 1 91, 925 (1995).CrossRefGoogle Scholar
40. Suzuki, H., Matsubara, H., Kishino, J. and Kondoh, T.: Simulation of surface and grain boundary properties of alumina by molecular dynamics method. J. Ceram. Soc. Jpn. 106, 1215 (1998).CrossRefGoogle Scholar
41. de Leeuw, N.H. and Parker, S.C.: Effect of chemisorption and physisorption of water on the surface structure and stability of αalumina. J. Am. Ceram. Soc. 82, 3209 (1999).CrossRefGoogle Scholar
42. Marmier, A. and Parker, S.C.: Ab initio morphology and surface thermodynamics of α–Al2O3 . Phys. Rev. 69, 115409 (2004).CrossRefGoogle Scholar
43. Scheu, C., Dehm, G., Rühle, M. and Brydson, R.: Electron-energy-loss spectroscopy studies of Cu–α–Al2O3 interfaces grown by molecular beam epitaxy. Philos. Mag. A 78, 439 (1998).CrossRefGoogle Scholar
44. Scheu, C., Stein, W. and Rühle, M.: Electron energy-loss near-edge structure studies of a Cu/(1120) α–Al2O3 interface. Phys. Status Solidi B 222, 199 (2000).3.0.CO;2-2>CrossRefGoogle Scholar
45. Sasaki, T., Matsunaga, K., Ohta, H., Hosono, H., Yamamoto, T. and Ikuhara, Y.: Atomic and electronic structure of Cu/α–Al2O3 interfaces by pulsed laser deposition. Sci. Technol. Adv. Mater. 4, 575 (2003).CrossRefGoogle Scholar
46. Scheu, C.: Manipulating bonding at a Cu/(0001)Al2O3 interface by different substrate cleaning processes. Interface Sci. 12, 127 (2004).CrossRefGoogle Scholar
47. Gao, M., Scheu, C., Wagner, T., Kurtz, W. and Rühle, M.: Bonding between Cu and α–Al2O3 . Z. Metallkd. 93, 438 (2002).CrossRefGoogle Scholar
48. Di Felice, R. and Northrup, J.E.: Theory of the clean and hydrogenated Al2O3(0001)-(1 × 1) surfaces. Phys. Rev. B 60, 16287 (1999).CrossRefGoogle Scholar
49. Wang, X.G., Chaka, A. and Scheffler, M.: Effect of the environment on α–Al2O3(0001) surface structures. Phys. Rev. Lett. 84, 3650 (2000).CrossRefGoogle ScholarPubMed
50. Ahn, J. and Rabalais, J.W.: Composition and structure of the Al2O3(0001)-(1×1) surface. Surf. Sci. 388, 121 (1997).CrossRefGoogle Scholar
51. Backhaus-Ricoult, M.: Gibbs adsorption at α alumina-copper interfaces. J. Eur. Ceram. Soc. 23, 2747 (2003).CrossRefGoogle Scholar
52. Backhaus-Ricoult, M. and Trichet, M.F.: Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces. Z. Metallkd. 94, 250 (2003).CrossRefGoogle Scholar
53. Zhang, W., Smith, J.R. and Evans, A.G.: The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3 . Acta Mater. 50, 3803 (2002).CrossRefGoogle Scholar
54. Zhao, G.L., Smith, J.R., Raynolds, J. and Srolovitz, D.J.: First-principles study of the α–Al2O3(0001)/Cu(111) interface. Interface Sci. 3, 289 (1996).CrossRefGoogle Scholar
55. Batyrev, I.G. and Kleinman, L.: In-plane relaxation of Cu(111) and Al(111)/α–Al2O3(0001) interfaces. Phys. Rev. B. 64, 033410 (2001).CrossRefGoogle Scholar
56. Wang, X.G., Smith, J.R. and Scheffler, M.: Adhesion of copper and alumina from first principles. J. Am. Ceram. Soc. 86, 696 (2003).CrossRefGoogle Scholar
57. Hernández, N.C. and Sanz, J.F.: First principles study of Cu atoms deposited on the α–Al2O3 surface. J. Phys. Chem. B 106, 11495 (2002).CrossRefGoogle Scholar
58. Lodziana, Z. and Norskov, J.K.: Adsorption of Cu and Pd on α–Al2O3(0001) surfacees with different stoichiometries. J. Chem. Phys. 115, 11261 (2001).CrossRefGoogle Scholar
59. French, T.M. and Somorjai, G.A.: Composition and surface structure of the (0001) face of α–Al2O3 by low-energy electron diffraction. J. Phys. Chem. 74, 2489 (1970).CrossRefGoogle Scholar
60. Gautier, M., Renaud, G., Van, L.P., Villette, B., Pollak, M., Thromat, N., Jollet, F. and Duraud, J-P.: α–Al2O3 (0001) surfaces: Atomic and electronic structure. J. Am. Ceram. Soc. 77, 323 (1994).CrossRefGoogle Scholar
61. Renaud, G., Villette, B., Vilfan, I. and Bourret, A.: Atomic structure of the α–Al2O3 (0001) (311/2 × 311/2)R ± 9° reconstruction. Phys. Rev. Lett. 73, 1825 (1994).CrossRefGoogle Scholar
62. Kerr, J.A.: Strengths of chemical bonds, in CRC Handbook of Chemistry and Physics, edited by Lide, D.R. and Frederikse, H.P.R. (76th edition, CRC Press, Inc., Boca Raton, FL, 19951996), pp. 951.Google Scholar
63. Ealet, B. and Gillet, E.: Metal-alumina interface: Influence of the metal electronegativity and of the substrates stoichiometry. Surf. Sci. 367, 221 (1996).CrossRefGoogle Scholar
64. Alemany, P., Boorse, R.S., Burlitch, J.M. and Hoffmann, R.: Metal-ceramic adhesion: Quantum mechanical modeling of transition metal–Al2O3 interfaces. J. Phys. Chem. 97, 8464 (1993).CrossRefGoogle Scholar
65. Nath, K. and Anderson, A.B.: Oxidative bonding of (0001)α–Al2O3 to close-packed surfaces of the first transition-metal series, Sc through Cu. Phys. Rev. B 39, 1013 (1989).CrossRefGoogle ScholarPubMed
66. TePsesch, P.D. and Quong, A.A.: First-principles calculation of α-alumina (0001) surfaces energies with and without hydrogen. Phys. Status Solidi 217, 377 (2000).3.0.CO;2-B>CrossRefGoogle Scholar
67. Kelber, J.A., Niu, C., Shepherd, K., Jennison, D.R. and Bogicevic, A.: Copper wetting of α–Al2O3(0001): Theory and experiment. Surf. Sci. 446, 76 (2000).CrossRefGoogle Scholar
68. Wang, X.G., Smith, J.R. and Scheffler, M.: Effect of hydrogen on Al2O3/Cu interfacial structure and adhesion. Phys. Rev. B 66, 073411 (2002).CrossRefGoogle Scholar
69. Lodziana, Z., Norskov, J.K. and Stoltze, P.: The stability of the hydroxylated (0001) surface of α–Al2O3 . J. Chem. Phys. 118, 11179 (2003).CrossRefGoogle Scholar
70. Schmid, R.: A thermodynamic analysis of the Cu–O system with an associated solution model. Metall. Trans. B 14B, 473 (1983).CrossRefGoogle Scholar